8,706 research outputs found

    GMC Collisions as Triggers of Star Formation. V. Observational Signatures

    Full text link
    We present calculations of molecular, atomic and ionic line emission from simulations of giant molecular cloud (GMC) collisions. We post-process snapshots of the magneto-hydrodynamical simulations presented in an earlier paper in this series by Wu et al. (2017) of colliding and non-colliding GMCs. Using photodissociation region (PDR) chemistry and radiative transfer we calculate the level populations and emission properties of 12^{12}CO J=1−0J=1-0, [CI] 3P1→3P0^3{\rm P}_1\rightarrow{^3{\rm P}}_0 at 609 μ609\,\mum, [CII] 158 μ158\,\mum and [OI] 3P1→3P0^3{\rm P}_1\rightarrow{^3{\rm P}}_0 transition at 63 μ63\,\mum. From integrated intensity emission maps and position-velocity diagrams, we find that fine-structure lines, particularly the [CII] 158 μ158\,\mum, can be used as a diagnostic tracer for cloud-cloud collision activity. These results hold even in more evolved systems in which the collision signature in molecular lines has been diminished.Comment: 10 pages, 7 figures, accepted for publication in ApJ, comments welcom

    Gradual Enhancement of Stripe-Type Antiferromagnetism in Spin Ladder Material BaFe2_2S3_3 Under Pressure

    Full text link
    We report pressure-dependent neutron diffraction and muon spin relaxation/rotation measurements combined with first-principles calculations to investigate the structural, magnetic, and electronic properties of BaFe2_2S3_3 under pressure. The experimental results reveal a gradual enhancement of the stripe-type ordering temperature with increasing pressure up to 2.6 GPa and no observable change in the size of the ordered moment. The ab initio calculations suggest that the magnetism is highly sensitive to the Fe-S bond lengths and angles, clarifying discrepancies with previously published results. In contrast to our experimental observations, the calculations predict a monotonic reduction of the ordered moment with pressure. We suggest that the robustness of the stripe-type antiferromagnetism is due to strong electron correlations not fully considered in the calculations

    Faraday Instability in a Surface-Frozen Liquid

    Full text link
    Faraday surface instability measurements of the critical acceleration, a_c, and wavenumber, k_c, for standing surface waves on a tetracosanol (C_24H_50) melt exhibit abrupt changes at T_s=54degC above the bulk freezing temperature. The measured variations of a_c and k_c vs. temperature and driving frequency are accounted for quantitatively by a hydrodynamic model, revealing a change from a free-slip surface flow, generic for a free liquid surface (T>T_s), to a surface-pinned, no-slip flow, characteristic of a flow near a wetted solid wall (T < T_s). The change at T_s is traced to the onset of surface freezing, where the steep velocity gradient in the surface-pinned flow significantly increases the viscous dissipation near the surface.Comment: 4 pages, 3 figures. Physical Review Letters (in press

    The DEEP Groth Strip Galaxy Redshift Survey. III. Redshift Catalog and Properties of Galaxies

    Full text link
    The Deep Extragalactic Evolutionary Probe (DEEP) is a series of spectroscopic surveys of faint galaxies, targeted at the properties and clustering of galaxies at redshifts z ~ 1. We present the redshift catalog of the DEEP 1 GSS pilot phase of this project, a Keck/LRIS survey in the HST/WFPC2 Groth Survey Strip. The redshift catalog and data, including reduced spectra, are publicly available through a Web-accessible database. The catalog contains 658 secure galaxy redshifts with a median z=0.65, and shows large-scale structure walls to z = 1. We find a bimodal distribution in the galaxy color-magnitude diagram which persists to z = 1. A similar color division has been seen locally by the SDSS and to z ~ 1 by COMBO-17. For red galaxies, we find a reddening of only 0.11 mag from z ~ 0.8 to now, about half the color evolution measured by COMBO-17. We measure structural properties of the galaxies from the HST imaging, and find that the color division corresponds generally to a structural division. Most red galaxies, ~ 75%, are centrally concentrated, with a red bulge or spheroid, while blue galaxies usually have exponential profiles. However, there are two subclasses of red galaxies that are not bulge-dominated: edge-on disks and a second category which we term diffuse red galaxies (DIFRGs). The distant edge-on disks are similar in appearance and frequency to those at low redshift, but analogs of DIFRGs are rare among local red galaxies. DIFRGs have significant emission lines, indicating that they are reddened mainly by dust rather than age. The DIFRGs in our sample are all at z>0.64, suggesting that DIFRGs are more prevalent at high redshifts; they may be related to the dusty or irregular extremely red objects (EROs) beyond z>1.2 that have been found in deep K-selected surveys. (abridged)Comment: ApJ in press. 24 pages, 17 figures (12 color). The DEEP public database is available at http://saci.ucolick.org

    A Practical Simulation Flow for Singing Capacitor based Acoustic Noise Analysis

    Get PDF
    Multilayer ceramic capacitors (MLCCs) are widely used in modern electronics. Due to the piezoelectric effect of the ceramic material, however, MLCCs subjected to electrical noise may vibrate and generate acoustic noise, as \u27singing\u27. Acoustic noise can be annoying for users, especially within mobile devices, so it becomes important to perform acoustic noise analysis before a product is released. In this paper, a practical simulation flow for singing capacitor based acoustic noise is presented. The simulation flow and analysis method are developed on Ansys Sherlock and Mechanical. In Ansys Sherlock, local library and Approved Vendor List (AVL) files were used to build the model efficiently. After the PCB and all parts were set correctly, the model was imported to Ansys Mechanical for further modal analysis and harmonic analysis. Using the proposed simulation flow the simulation model could be easily created, and the inherent vibration properties and frequency response of the structure could be estimated

    The infrared dust bubble N22: an expanding HII region and the star formation around it

    Full text link
    Aims. To increase the observational samples of star formation around expanding Hii regions, we analyzed the interstellar medium and star formation around N22. Methods. We used data extracted from the seven large-scale surveys from infrared to radio wavelengths. In addition we used the JCMT observations of the J = 3-2 line of 12CO emission data released on CADC and the 12CO J = 2-1 and J =3-2 lines observed by the KOSMA 3 m telescope. We performed a multiwavelength study of bubble N22. Results. A molecular shell composed of several clumps agrees very well with the border of N22, suggesting that its expansion is collecting the surrounding material. The high integrated 12CO line intensity ratio (ranging from 0.7 to 1.14) implies that shocks have driven into the molecular clouds. We identify eleven possible O-type stars inside the Hii region, five of which are located in projection inside the cavity of the 20 cm radio continuum emission and are probably the exciting-star candidates of N22. Twenty-nine YSOs (young stellar objects) are distributed close to the dense cores of N22. We conclude that star formation is indeed active around N22; the formation of most of YSOs may have been triggered by the expanding of the Hii region. After comparing the dynamical age of N22 and the fragmentation time of the molecular shell, we suggest that radiation-driven compression of pre-existing dense clumps may be ongoing.Comment: accepted in A&A 30/05/2012. arXiv admin note: text overlap with arXiv:1010.5430 by other author

    Universal Quantum Logic from Zeeman and Anisotropic Exchange Interactions

    Full text link
    Some of the most promising proposals for scalable solid-state quantum computing, e.g., those using electron spins in quantum dots or donor electron or nuclear spins in Si, rely on a two-qubit quantum gate that is ideally generated by an isotropic exchange interaction. However, an anisotropic perturbation arising from spin-orbit coupling is inevitably present. Previous studies focused on removing the anisotropy. Here we introduce a new universal set of quantum logic gates that takes advantage of the anisotropic perturbation. The price is a constant but modest factor in additional pulses. The gain is a scheme that is compatible with the naturally available interactions in spin-based solid-state quantum computers.Comment: 5 pages, including 2 figures. This version to be published in Phys. Rev.
    • …
    corecore