471 research outputs found

    Lateral Shift Makes a Ground-Plane Cloak Detectable

    Full text link
    We examine the effectiveness of the ground-plane invisibility cloak generated from quasiconformal mapping of electromagnetic space. This cloak without anisotropy will generally lead to a lateral shift of the scattered wave, whose value is comparable to the height of the cloaked object, making the object detectable. This can be explained by the fact that the corresponding virtual space is thinner and wider than it should be. Ray tracing on a concrete model shows that for a bump with a maximum height of 0.2 units to be hidden, the lateral shift of a ray with 45 degree incidence is around 0.15 units

    Extraordinary surface voltage effect in the invisibility cloak with an active device inside

    Full text link
    The electromagnetic field solution for a spherical invisibility cloak with an active device inside is established. Extraordinary electric and magnetic surface voltages are induced at the inner boundary of a spherical cloak, which prevent electromagnetic waves from going out. The phase and handness of polarized waves obliquely incident on such boundaries is kept in the reflected waves. The surface voltages due to an electric dipole inside the concealed region are found equal to the auxiliary scalar potentials at the inner boundary, which consequently gain physical counterparts in this case

    Cylindrical Cloak with Axial Permittivity/Permeability Spatially Invariant

    Full text link
    In order to reduce the difficulties in the experimental realizations of the cloak but still keep good performance of invisibility, we proposed a perfect cylindrical invisibility cloak with spatially invariant axial material parameters. The advantage of this kind of TE (or TM) cloak is that only rho and phi components of mu (or epsilon) are spatially variant, which makes it possible to realize perfect invisibility with two-dimensional (2D) magnetic (or electric) metamaterials. The effects of perturbations of the parameters on the performance of this cloak are quantitatively analyzed by scattering theory. Our work provides a simple and feasible solution to the experimental realization of cloaks with ideal parameters

    Analysis of photonic crystal filters by the finite-difference time-domain technique

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (leaves 76-80).by Bae-Ian Wu.S.M

    Cylindrical cloaking at oblique incidence with optimized finite multilayer parameters

    Full text link
    We propose multilayer cylindrical invisibility cloaks that are optimized for oblique incidences through combination of analytic formalism of scattering and genetic optimization. We show that by using only four layers of homogeneous and anisotropic metamaterials without large values of constitutive parameters, the scattering for oblique incidences can be reduced by two orders. Although the optimization is done at a single incident angle, the cloak provides reduced scattering over a large range of incident angles

    A Rigorous Analysis of Plane-transformed Invisibility Cloaks

    Full text link
    The electromagnetic characteristics of plane-transformed invisibility cloaks are quantitatively studied in this paper. We take elliptical cylindrical cloak as the example, and use an elliptical cylindrical wave expansion method to obtain the scattered field. It is demonstrated that an ideal elliptical cylindrical cloak is inherently visible. Noticeable field scattering and penetration will be induced when the cloak is exposed directly to an electromagnetic wave. However, as long as the cloak consists of a perfect electric conducting lining at the interior surface, perfect invisibility can still be achieved along the direction parallel to the major axis of the cloak for transverse magnetic illumination. Another plane-transformed cloak with a conical geometry is also proposed. The advantage of this cloak is that all the permittivity and permeability elements are spatially invariant while none of them is singular. Hence, it is easily realizable with artificially structured metamaterials. Finally, we show that this kind of cloak can also be used to cloak objects on a flat ground plane.Comment: 25 pages, 8 figure

    Directive Emission Obtained by Coordinate Transformation

    Full text link
    We use coordinate transformation theory to realize substrates that can modify the emission of an embedded source. Simulation results show that with proper transformation functions the energy radiated by a source embedded in these space variant media will be concentrated in a narrow beam. The thickness of the slab achieved with our transformations will no longer be restricted by the evanescent modes and the source can be placed at any position along the boundary of the substrate without affecting the radiation pattern. We also discuss the case where reduced parameters are used, which still performs well and is physically realizable.Comment: 15 pages, 5 figure

    Time domain simulation of electromagnetic cloaking structures with TLM method

    Get PDF
    This paper was published in Optic Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.16.006461The increasing interest in invisible cloaks has been prompted in part by the availability of powerful computational resources which permit numerical studies of such a phenomenon. These are usually carried out with commercial software. We report here a full time domain simulation of cloaking structures with the Transmission Line Modeling (TLM) method. We first develop a new condensed TLM node to model metamaterials in two dimensional situations; various results are then presented, with special emphasis on what is not easily achievable using commercial software.This work has been supported in part by the “Ministerio de Educación y Ciencia” of Spain under research projects No. FIS2004-03273 and FIS2007-63293 cofinanced with FEDER funds of the European Union
    corecore