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Abstract

A special finite-difference time-domain (FD-TD) formulation which allows electro-
magnetic (EM) wave wideband simulations of oblique incidence for periodic media is
used for the design and analysis of an infrared photonic crystal filter with dual stop-
bands at 3 - 5 pm and 8 - 12 pm. The transmission coefficient in the main stopband
(8 - 12 [tim) is below -10 dB. Scattering coefficients are calculated for different inci-
dence angles, and the stopbands are shown to exist for different angles of incidence.

A hybrid method is developed for analyzing multilayer structures. Scattering
coefficients from a single layer filter can be computed by using FD-TD. Applying
microwave network theory, the scattering characteristics of a single layer can be rep-
resented by a generalized scattering matrix which can be transformed into a transfer
matrix. Scattering by multilayer structures is then calculated by the multiplication of
transfer matrices. This technique allows efficient analysis of different configurations
of layers without resorting to full EM simulation, which requires a lot of computing
time and memory. Using the hybrid method, the transmission coefficients of cas-
caded metal screens with different angles of incidence are presented and compared
with FD-TD results. The contributions of higher-order modes to the transmission
characteristics are identified.

Thesis Supervisor: Dr. Jin Au Kong
Title: Professor of Electrical Engineering

Thesis Supervisor: Dr. Y. Eric Yang
Title: Research Scientist



Acknowledgments

First of all, I would like to thank Professor Kong for his teaching and kindness, and Dr.

Eric Yang for guiding me through this research. They have given me valuable insights.

I would also like to thank Simon, Alex and Bob Atkins from Lincoln Laboratory for

their valuable help and discussions and introducing me to this project. I would like

to acknowledge the help Andrew Kao gave me to understand his code. Without

him, this project would have been very hard. Yan, Henning and Joe helped me so

much throughout the project in many aspects, thank you very much. I also want to

thank Dr. Ding, Dr. Jerry Akerson, Dr. Sean Shih, Chi, Chris and Peter, for their

friendship. Last but not least, I want to thank my parents, my brother and Mimi for

their love, patience and support.



To my parents, my brother and Mimi



Contents

1 Introduction 11

1.1 M otivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Past Works and Research Description . . . . . . . . . . . . . . . . . . 13

1.2.1 Design of a Photonic Crystal Bandstop Filter in the Band

3 - 4pm and 8 -12pm . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Analysis of Multilayer Structures by Hybrid Method Based on

FD-TD and Transfer Matrix Formulation . . . . . . . . . . . . 14

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Finite-Difference Time-Domain Method 16

2.1 Regular FD-TD Method . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Central Differencing and Propagation Equations . . . . . . . . 16

2.1.2 Numerical Dispersion and Stability . . . . . . . . . . . . . . . 19

2.1.3 Computational Domain . . . . . . . . . . . . . . . . . . . . . . 20

2.1.4 Modeling of Dielectrics and Conductors . . . . . . . . . . . . . 21

2.1.5 Absorbing Boundary Condition . . . . . . . . . . . . . . . . . 21

2.1.6 Periodic Boundary Condition . . . . . . . . . . . . . . . . . . 23

2.2 Oblique Incidence FD-TD . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 P - Q Propagation Equations . . . . . . . . . . . . . . . . . . 24

2.2.2 Stability Criteria and Boundary Conditions . . . . . . . . . . 28

5



CONTENTS

3 Simulation Results and Analysis

3.1 Comparison between FD-TD and Experiment in IR Band ....

3.2 Parametric Study at Normal Incidence . . . . . . . . . . . . . .

3.3 Effects of Metal Thickness and Dielectric Constant of Substrate

3.3.1 Metal with Finite Thickness . . . . . . . . . . . . . . . .

3.3.2 Dielectric with High Permittivity . . . . . . . . . . . . .

3.4 Optimal Design of Filter and Performance at Oblique Incidence

3.4.1 Aligned Structure . . . . . . . . . . . . . . . . . . . . . .

3.4.2 Face-Center-Cubic Structures . . . . . . . . . . . . . . .

30

. . . 30

. . . 33

. . . 40

. . . 40

. . . 40

. . . 41

. . . 44

. . . 49

4 Hybrid Method for Multilayer Analysis

4.1 Generalized Scattering Matrix . . . . . . . . . . . . . . . . . . . . . .

4.2 Transfer Matrix for Dielectric . . . . . . . . . . . . . . . . . . . . . .

5 Simulation Results Based on Hybrid Method

5.1 D ichroic Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 Square Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Conclusion

54

55

62

64

64

66

74

6



List of Figures

1-1 Usage of photonic crystal filter as a sensor window. . . . . . . . . . . 12

2-1 Yee's lattice for Regular Finite-Difference Time-Domain formulation. 18

2-2 Cross section of the computational domain of FD-TD for periodic sur-

faces with absorbing boundary on top and bottom and periodic bound-

ary at the sides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2-3 Periodic boundary condition. The field quantity outside the computa-

tional cell can be updated via translational symmetry. . . . . . . . . . 22

2-4 Comparison of wave front position between normal incidence and oblique

incidence. Non-causal periodic boundary relation hinders the use of

regular FD-TD for oblique incidence on periodic surfaces. . . . . . . . 24

2-5 Orientation of k-vector at oblique incidence. . . . . . . . . . . . . . . 25

2-6 M odified Yee's lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2-7 Ratio between A and cAt vs. 0 and # . . . . . . . . . . . . . . . . . . 28

3-1 Geometry of the 3-D IR MDPC filter. Metallic parallelepipeds with

square cross section is arranged in a face-center-cubic (100)-oriented

crystal structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3-2 Comparison between FD-TD and experimental results of a 3D MDPC

IR bandstop filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7



LIST OF FIGURES

3-3 Geometry of the design of one layer used in the parametric study and

final design. Circular metal discs are arranged in a triangular grid, and

are embedded in a dielectric substrate of e, = 2.1, 2.3. . . . . . . . . 33

3-4 Transmission coefficients of bandstop filter with one layer of metal

screen. S = 2 pm, d = 1.58 pm. . . . . . . . . . . . . . . . . . . . . . 34

3-5 Series A. Transmission coefficients of bandstop filters with three aligned

layers of metallic screens. S = 2pm, h = 0.72pm. . . . . . . . . . . . 36

3-6 Series B. Transmission coefficients of bandstop filters with three aligned

layers of metallic screens. S = 2 pm, h = 0.96 pm. . . . . . . . . . . . 36

3-7 Series C. Transmission coefficients of bandstop filters with three aligned

layers of metallic screens. S = 2 pm, h = 1.14 pm. . . . . . . . . . . . 37

3-8 Series D. Transmission coefficients of bandstop filters with three aligned

layers of metallic screens. S = 2pm, h = 1.44pm. . . . . . . . . . . . 37

3-9 Infinitely thin metal vs. metal with finite thickness. . . . . . . . . . . 41

3-10 Internal angles for superstrates with different permittivities. . . . . . 42

3-11 Transmission characteristics with substrate having c, = 2.3 . . . . . . 43

3-12 Transmission characteristics with substrate having E, = 4.8 . . . . . . 43

3-13 Azimuthal angle of incidence # with respect to the filter. . . . . . . . 44

3-14 Transmission coefficient for TE incidence, 0 = 0 - 60', # = 00..... 46

3-15 Transmission coefficient for TM incidence, 0 = 0' - 600, # = 00. . . 46

3-16 Transmission coefficient for TE incidence, 0 = 0' - 60, = 900. . . 47

3-17 Transmission coefficient for TM incidence, 6 = 0* - 600, # = 900 . . 47

3-18 Relative position of the metal patches at different layers for a face-

center-cubic structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3-19 Unit cell for face-center-cubic structure . . . . . . . . . . . . . . . . . 49

3-20 Transmission coefficient (fcc) for TE incidence, 0 = 00 - 60', # = 00. . 51

8



LIST OF FIGURES 9

3-21 Transmission coefficient (fcc) for TM incidence, 0 = 00 - 600, # 00. 51

3-22 Transmission coefficient (fcc) for TE incidence, 0 = 0' - 600 = 90'. 52

3-23 Transmission coefficient (fcc) for TM incidence, 0 = 0' - 60', # = 90'. 52

4-1 General structure of a multilayer filter. . . . . . . . . . . . . . . . . . 56

4-2 Orientation of incident wavevector k. . . . . . . . . . . . . . . . . . . 57

4-3 Scattering of different modes from a periodic surface. . . . . . . . . . 58

4-4 Truncated sum of modes. Modes are computed if they fall within a

circle of finite radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4-5 Graphical representation of the scattering matrix. . . . . . . . . . . . 60

5-1 Geometry of the periodic surface used in the dichroic filter. . . . . . . 65

5-2 Cross section of the dichroic plate sandwich filter. . . . . . . . . . . . 65

5-3 Orientation of the incident wave . . . . . . . . . . . . . . . . . . . . . 66

5-4 Comparison between two different hybrid methods for TE incidence. 67

5-5 Comparison between two different hybrid methods for TM incidence. 68

5-6 Geometry of the cascaded metal screen used in the hybrid method. 70

5-7 Magnitude of vertical propagation factor for different modes. . . . . . 72

5-8 Transmission coefficients of different modes (co-polarized). . . . . . . 72

5-9 Transmission coefficients of different modes (cross-polarized). . . . . . 73

5-10 Comparison between FD-TD and hybrid method. . . . . . . . . . . . 73



List of Tables

3.1 Resonance frequency based on calculation. . . . . . . . . . . . . . . . 38

3.2 Relative bandwidth and minimum transmission coefficients of the band-

stop filters (parametric study) . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Relative bandwidths of the dual stop bands at different incident angles

(aligned structure). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Relative bandwidths of the dual stop bands at different incidence angles

(fcc structure). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Degeneracy of modes for normal incidence . . . . . . . . . . . . . . . 69

10



Chapter 1

Introduction

Photonic crystals [1, 2] are a class of photonic devices that utilize periodic structures

to create photonic band gaps [3, 1], analogous to the III-V compound semiconductors

in which photons with specific energies cannot be transmitted through the structures.

The periodicity of photonic crystals can be formed by differences in dielectric constant,

or by a combination of metal and dielectric, and hence the term metallodielectric

photonic crystals (MDPC) [4].

Analysis of photonic crystal filters is similar to yet different from the analysis of

frequency selective surfaces (FSS). It is because the close coupling between the peri-

odic elements make it more difficult to predict the scattering characteristics. To design

an IR filter using photonic crystals, experimental and theoretical techniques can be

used. However, the cost and time for fabrication and testing become prohibitively

high. An accurate electromagnetic model is in demand.

Applications of photonic crystal filters have been found in several areas. For

thermal sensors, they can be used to isolate the interference from the atmospheric

background. With dichroic plates [5], incident electromagnetic waves with different

frequencies can be separated at large angle of incidence. In thermophotovoltaic (TPV)

11



CHAPTER 1. INTRODUCTION 12

3 - 5pm and 8 -12pum

All frequencies 3

Figure 1-1: Usage of photonic crystal filter as a sensor window.

cells, it improves the efficiency of the cell by providing spectral control of the emission

from the thermal source. There are numerous applications where dichroic filters that

operate over a wide solid angle are desirable. Consider, for example, a satellite-based

IR imager which maps the Earth's surface in the 3 - 4 pm and 8 - 12 pm bands

where the atmosphere is transparent. To minimize out-of-band loading of the IR

sensor from the albedo, a useful primary mirror coating would reflect strongly from

3 - 4 pm and 8 - 12 pLm and would transmit out-of-band radiation away from the

sensor. Another potential application is for low-emissivity window treatments for

energy-efficient buildings.

1.1 Motivation

Previous experimental results [4, 6] based on an implementation of MDPC have

demonstrated promising results in these two bands. An accurate electromagnetic

modeling and fast analyzing method become very important for designing and under-

standing multilayer structures. It has become available recently and is being applied

to actual design process in this research.
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1.2 Past Works and Research Description

Analysis of FSS had been carried out by Ulrich [7], and approximation formulas

for the transmission and reflection coefficients of the fundamental modes along the

propagation direction have been found for metal screens with simple geometry. More

accurate formulas for metal grids can be found in [8]. Subsequent development of

FSS resulted in a variety of element geometries and configurations of the filters for

higher frequency bands.

Traditional FSS in the microwave regime offer a filtering effect at the expense

of angular dispersion, which causes the scattering coefficients for different angles of

incidence to be different. This is highly undesirable in applications where omnidi-

rectional performance is required. An omnidirectional mirror has been reported in

[9] using a cascade of dielectric materials, which can produce a single stopband. In

order to create a dual stopband, a metallodielectric photonic crystal (MDPC) is used.

In MDPC, strong coupling of different Floquet modes can create stopbands that are

comparatively insensitive to the angle of incidence. The oblique-incidence FD-TD for-

mulation by Veysoglu [10] and Kao [11] allows accurate wide-band calculation of the

scattering characteristics of a periodic medium at different incidence angles. Design-

ing dual-band photonic crystal filters with omnidirectional stopbands is thus made

possible.

Analysis of large structures with different configurations requires large compu-

tational resources. The transfer matrix method adapted from microwave network

theory [12] can be applied to model each layer of a multilayer structure as a multi-

mode element. Coupling between different modes of a single layer can be represented

by a scattering matrix. By transforming the scattering matrix into a transfer matrix

that can be cascaded, the scattering characteristics of a multilayer structure can be

calculated.

13
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In this research, there are two objectives. First, an IR bandstop filter implemented

with MDPC for the bands 3 - 4 pum and 8 - 12 pm is to be designed. Second, a

hybrid method based on the FD-TD and transfer matrix method is used to analyze

the scattering characteristics of multilayer photonic crystal filters and compare the

results with full FD-TD simulations.

1.2.1 Design of a Photonic Crystal Bandstop Filter in the

Band 3 - 4pm and 8 - 12pum

Parametric studies based on the designs from several references with the oblique

incidence FD-TD computer codes based on [11] have been carried out to study the

transmission characteristics at normal incidence in the desired bands. Designs with

good dual-band performance were chosen for oblique incidence simulations. Effects of

finite thickness metal and dielectrics with high permittivities are studied. The final

design utilizes thin metallic disks embedded in a dielectric substrate with e, = 2.1.

Calculations have shown that the stopbands persist over ±600. The final design is

scheduled for fabrication and testing at Lincoln Laboratory in Summer, 1999.

1.2.2 Analysis of Multilayer Structures by Hybrid Method

Based on FD-TD and Transfer Matrix Formulation

A photonic crystal filter can be modeled as alternating layers of homogeneous di-

electrics and metal arrays. Each layer can be represented by a scattering matrix,

where the elements of the matrix are the scattering coefficients of different modes.

Using FD-TD, scattering coefficients of a metal screen for different Floquet modes

can be obtained from spatial integration of field quantities over the spatial harmonics,

while for the dielectric layers, scattering coefficients can be calculated analytically.

14



CHAPTER 1. INTRODUCTION

Since the scattering matrix describes the relationship between the incident fields and

the scattered fields, it can be transformed to a transfer matrix. With the formula-

tion of the transfer matrix method, multilayer results can be obtained by multiplying

(cascading) the transfer matrices, which in turn is based on single layer FD-TD re-

sults. Calculations from the transfer matrix method can then be compared with a

computationally intensive FD-TD simulation of the multilayer structures.

1.3 Outline of the Thesis

The thesis is divided into 6 chapters. Chapter 1 contains the background, motivation

and the description of the research. Chapter 2 introduces the formulation of the

oblique incidence FD-TD method as the simulation tool for filter design. In Chapter

3 the simulation results of a parametric study and the calculated performance of the

final photonic crystal filter design are presented. Chapter 4 describes the formulation

of the hybrid method and how it can be used to analyze multilayer filters and Chapter

5 shows the comparison between FD-TD and the hybrid method. Finally, Chapter 6

concludes the thesis with a description of possible future work.

15



Chapter 2

Finite-Difference Time-Domain

Method

In this chapter, the formulation of the Finite-Difference Time-Domain (FD-TD)

method for periodic surfaces is introduced for both the normal and oblique inci-

dence case. Regular FD-TD for periodic surfaces can handle plane waves at normal

incidence only. The oblique FD-TD method can handle an obliquely incident plane

wave.

2.1 Regular FD-TD Method

2.1.1 Central Differencing and Propagation Equations

The Finite-Difference Time-Domain (FD-TD) method [13] is based on the discretiza-

tion of Maxwell equations:

v-B=0,0 VxH=8t

16
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V*-E = p, V xE=

The Maxwell equations in differential form for free space are:

89Hx
at

0at

at

OEz & E E Ex
ay az at

_Ex Ez
Oz ax

= aEy _Ex

ax ay

aEy _aHz

%_0at C)
aE aHzy
at ax

The curl equations of (2.1) are used together with the following central differencing

scheme:

a f (x + Ax/2) - f(x - Ax/2)
Ax

(2.3)

Upon discretization over time and space, differential equations can be rewritten

as difference equations:

Hn+.!H~2Hx (i,j+}I,k+j!)

H2+2

H +2
y(i+}I,j,k+}!)

Hn+i .
Hz (i+-I,j+',k)

En+1
x(i+ ,j,k)

=H 2
x(i,j+jI,k+ )

A (i,j+1,k+)

=H 2

y(i+ I,j,k+ 1)

[E"(i+lj,k+1) -

Hz (i+-I,j+jI,k)

x(i+ ,j,k)

+ o {{Hz(ij+i!k+!) -

E z(i,j,k+i)] + [E"(i,j+Ik) - E"(i+lj+,k+1)}

E(i+ij k)] + [Ez(i,j,k+i) - E(i+jk+i)}

En"(,j+.!,k)] + [En(i+i!j k) -E(i+1j +1,k)}

Hz(i,j-.,k+i)]+ [H(i+1j k- 1) -H "(i+!J k+!)]

(2.1)

aHz
ax

aHx
ay

(2.2)
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En+1
y(i,j+1,k)

EnL+1z(i,j,k+!)

(0,0,1

a;

y

1,0,0)

Regular Yee's Cell

Figure 2-1: Yee's lattice for Regular Finite-Difference Time-Domain formulation.

The superscripts indicate the time steps and the subscripts indicate the coordi-

nates of the field quantities. AT is the time stepping unit and A is the space stepping

unit. The resulting difference equations are applied to the computational space, which

is based on the Yee lattice (Figure 2-la). As indicated in (2.4), the E fields are lo-

cated on the edges of the cells and are updated when t = n, while the HI fields are

= E"
y(i,j+-,k)

+ J{[Hx(~±±) - +x -z~+I~+I

+ ([H,"i,j+.I,k+i!) - ,(i,j+.Ik-!)] +[Hz(i--!j+i1,k)-Hz(isik)

= E
z(i,j,k+})

+ ([H"(i+i,j,k+1) - H -I,j,k+i)) + [Hj"(i,j-Ik+1) -H(ij+1k1)}

(2.4)

z
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computed at the center of the faces of the cells and are updated when t = n + 1/2.

This leap-frogging method allows the time-marching of the E and H fields and forms

the basis of the propagation of EM waves inside the computational domain.

2.1.2 Numerical Dispersion and Stability

To ensure numerical stability and reliability, the discretization process must satisfy

several conditions. Consider the dispersion relation for free space:

eopo = k2 + k + k (2.5)

where the phase velocity is c = 1/ ,poco. In the discretized domain, the dispersion

equation [14] becomes:

sin 2 = (A) sin 2 kx A
2

+ sin 2
2

*2 k~A+ sin 2 A
2

(2.6)

To ensure a consistent numerical phase velocity in the computational domain, the

spatial discretization should be small enough such as

(2.7)A< min
- 10

which give a sampling rate higher than the standard Nyquist sampling rate. For the

temporal discretization, we can consider the case of uniform gridding. In order to

ensure that w in (2.6) is positive, the Courant stability criterion must be enforced at

all times:

At< 0c

19CH APT ER 2.
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Absorbing boundary

- - - - - - - - - - - - - - - Observation plane

Incidence plane

7: Multilayer structure

- - - - - - - - - - - - - - - Observation plane

Absorbing boundary

Figure 2-2: Cross section of the computational domain of FD-TD for periodic surfaces
with absorbing boundary on top and bottom and periodic boundary at the sides.

2.1.3 Computational Domain

The computational domain is where the modeling of the filter is situated and the

propagation and scattering are calculated. The cross section of the computational

domain is shown in Figure 2-2. The top and bottom of the domain are terminated

by absorbing boundaries and the sides are extended infinitely by imposing a periodic

boundary condition. Inside the domain, the filter is in the middle of the computational

column and the incidence plane where the incident plane wave is excited is above it.

On top of the incidence plane, based on the "total-field/ scattered-field" formulation

[14], only the scattered fields are calculated. The observation planes register the field

quantities at every time step and through a temporal Fourier transform, the reflected

and the transmitted fields at each sampled frequency can be calculated.

20
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2.1.4 Modeling of Dielectrics and Conductors

Discontinuities of the propagation media in the computational domain are taken into

consideration by different ways. In the presence of dielectric, the dielectric constant

E will be the average value of the different dielectric materials that share the same

edge. Differences in permeabilities require a special treatment [11, 14] due to the

discontinuities introduced in the H fields. In the analysis of photonic crystal filters,

the substrates and metals will assume the value of p,.

Conducting elements in the filters are modeled as perfect electrical conductors

and have to satisfy the boundary condition that the tangential electric field is zero

on the surfaces of the metal: El = 0. This can be implemented by assigning zeros to

the tangential electric fields of the metal object at the end of each time step.

2.1.5 Absorbing Boundary Condition

In order to simulate an infinite space in a finite computational domain, the top and

bottom end are terminated by an absorbing boundary. Perfectly Matched Layer,

or PML [15] is used as the absorbing boundary condition. It functions by creating

computational layers with increasing electric and magnetic losses at the interfaces and

is usually backed by a conductor. The incident waves will be attenuated to a small

value before they are reflected. The reflected waves will be further attenuated to a

level that usually will not interfere with the calculation of the scattered fields. The

full PML equations based on the decomposition of the field quantities can be found

in [11]. The matching of the successive layers is ensured by the following relation:

0 E

amn A

21
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H
~%

-J

-------------------------------------

Figure 2-3: Periodic boundary condition. The field quantity outside the computa-
tional cell can be updated via translational symmetry.

Hence the name perfectly matched layer. Given an incident angle of Oj, the reflection

coefficient R of the PML can be expressed as:

-2 -") fz"'ax o(z)dz
R(Be) = e """ (2.8)

where Zmax is the total thickness of the absorbing layer and a(z) can be written as:

o(z) = omaz (Z)n
zmax

(2.9)

Thus the absorption will depend on the maximum loss Umax, the incidence angle O

and the order n of the PML. As the incidence angle 62 approaches 900, the PML

effectively becomes a conductor. And waves incident to the PML at grazing angles

will be reflected and interfere with the observation of the scattered fields.

CHAPTER 2. 22
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2.1.6 Periodic Boundary Condition

The physical structure consists of the periodic elements, the computational domain,

however, is reduced to only a unit cell size. In order to simulate the repetitive cells, a

periodic boundary condition is used. Based on the condition that the field distribution

on the surface is periodic, it can be expressed as:

E(r, t) = H(r + pr, t) (2.10)

where p, is the periodicity of the structure. To apply this condition for the FD-TD

code, first consider the electric field at the edge of the boundary (Figure 2-3). Take

E. as an example. To calculate E. we need to know the value of Hz outside the

boundary. But since the incident wave front is parallel to the surface (Figure 2-4a),

by virtue of the periodic boundary condition, 7(r, t) = H(r + Pr, t). The periodicity

is thus extended infinitely across the surface.

The situation is different for an obliquely incident wave (Figure 2-4b). The wave

front is tilted and reach the surface at different times t. Since the validity of the

operation (2.10) depend on the fact that the same phase front reaches the surface at

the same time, the periodic boundary condition is no longer applicable in the case of

oblique incidence. The updating process required an advanced field quantity and a

non-causal situation is encountered:

1(r, t,) = 7(r + pr, to + At) (2.11)

To preserve the periodic boundary condition, a variable transformation of the fields

is needed, which leads to the FD-TD formulation for oblique incidence.
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(a) (b)

Figure 2-4: Comparison of wave front position between normal incidence and oblique
incidence. Non-causal periodic boundary relation hinders the use of regular FD-TD
for oblique incidence on periodic surfaces.

2.2 Oblique Incidence FD-TD

The oblique incidence formulation was first developed by Veysoglu [10], and Kao [11]

derived the correct stability criteria and implemented them in the three-dimensional

case. The method is based on adding a lateral phase shift to compensate the phase

difference across the periodic surface so that the periodic boundary condition will

causal again. In doing so, the Maxwell equations are changed to P - Q differential

equations, where P and Q are new field variable, replacing E and H.

2.2.1 P - Q Propagation Equations

Consider a plane wave at oblique incidence traveling in the -z direction (Figure 2-5)

with a wavevector k = k + 9ky - skz:

ri = roeikxxeikvye-ikzz (2.12)
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Z

Y

x

Figure 2-5: Orientation of k-vector at oblique incidence.

Besides the dependence on z, the phase factor also depends on x and y. Define the

lateral phase shift factor

e-ik -' e-ikx e-ikyy

with the lateral wavevector k, to compensate the contribution from k2 and ky. We

can define new field variables P and Q:

Q Hffeik1Te-ikj-feikzz (2.13)

Note that the lateral phase shift is removed and P and Q propagate normal to the

surface although the vectors themselves are not parallel to the surface. It is not a plane

wave, and will satisfy Maxwell equation only with the appropriate transformation of

variables.
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Rewriting Maxwell equations in the frequency domain for free space with P and

Q gives:

= wyoQ (2.14)

where 1' = - k1 is the

domain as:

wavevector of the P and Q. We can rewrite (2.14) in time

Q

VxQ

A
V

a t
A
V

X (2.15)

where

A = , sin 0 cos 4 + 9 sin 6 sin #5 (2.16)

The equations (2.15) resemble the propagation of E and H in a bianisotropic

medium [16]:

VxH

VxE

= t (EoE + R )
= a (po-H + z Eat (2.17)

However, the P-Q system is dispersive, as the corresponding ( and ( are not contants

but are dependent on the angles of incidence 0 and #.
The subsequent difference equations are applied on the modified Yee's cell (Fig-

ure 2-6) which can also be considered as a superposition of regular Yee cells.

time stepping and the position of P and Q are shown in Figure 2-6.

The
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Figure 2-6: Modified Yee's lattice
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2.2.2 Stability Criteria and Boundary Conditions

Stability Criteria

With the new P - Q system, the stability criterion is also changed. Based on Kao's

calculation [11]:

A > Vi

At -- v?/pe - sin2 { sin cos $ + | sin sin$\ + j3vUpe - 2 sin 2 0 (1- sin $ cos $|}

(2.18)

where vi is the phase velocity of the incident wave on the incidence plane. For the

upper limit on the right side, y and e are chosen to be the least dense material in the

computational domain. Figure 2-7 shows the ratio between A and cAt as a function

# (in degree, with 0 = 600)

A

250

200-

150 --

100-

50

a'
0 10 20 30 40 50 60 70

0 (in degree, with 4 = 00)

Figure 2-7: Ratio between A and cAt vs. 0 and p

of O and p. Along the azimuthal direction, this ratio has a four-fold symmetry and

varies between minima (when the projection of k aligns with the x or y axis) and

28

80 90



CHAPTER 2. FINITE-DIFFERENCE TIME-DOMAIN METHOD

maxima (when the projection of ki is at 450 with the x or y axis). The same ratio (N)

increase monotonically as the polar angle of incidence becomes larger. As 6O -> 900,

-+ oo, and the time step At has to be infinitesimally small. On the other hand, as

with the P - Q differential equation, the stability criterion reduces to the Courant's

stability criterion as the propagation vector of the incident wave become normal.

Boundary Condition

The periodic boundary condition of the P - Q system is the same as in the case of

normal incidence. Because of the finer grid, more field quantities are needed to be

updated.

For the absorbing boundary conditions, the PML equations are changed in the

same fashion as Maxwell equations. The lateral phase compensation is multiplied to

the frequency domain equations before transforming back to the time domain.

The absorption of P and Q is similar to the normal incidence case. The simulations

in this research are done with PML with 8 layers and the noise floor is below -100 dB.
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Chapter 3

Simulation Results and Analysis

In this chapter, the simulation results and the analysis of the infrared bandstop filters

are presented. Firstly, the calculated transmission coefficient of a 3D MDPC filter

with 3D elements is compared to the experimental results, which demonstrate the

reliability of using FD-TD as a design tool for IR filter. Secondly, the structure and

the geometry of the proposed filter is presented It is composed of three layers of

periodic metal patches embedded in a dielectric. The normal incidence transmission

characteristics of the proposed filter are studied by varying the different geometric

parameters. The optimal design is further evaluated at different incidence angles.

The effects of high permittivity and alignment are discussed.

3.1 Comparison between FD-TD and Experiment

in IR Band

Published results have shown good agreement between FD-TD and measurement

in the GHz region [6]. To use FD-TD as a design tool, calculation is carried out

to compare FD-TD and IR measurement results. The verification of the FD-TD
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2.1 d=1pm

" 7----- ---57 WF El- -II h = 1m

3D View of IR MDPC filter Cross Section

Figure 3-1: Geometry of the 3-D IR MDPC filter. Metallic parallelepipeds with square

cross section is arranged in a face-center-cubic (100)-oriented crystal structure.

calculation for a 3D photonic crystal bandstop filter operating in the near infrared

band is based on the published results in [4]. The geometry of the filter under study

consists of metallic parallelepipeds with square cross section. These metal elements

are embedded in a substrate of a planarizing polymer with a dielectric constant of

E, = 2.1. The elements are arranged such that they form the (100)-oriented face-

centered cubic (fcc) crystal structure (Figure 3-1). The side of the square cross

section is 1.86 pm, the center-to-center spacing is 3.18 pm and the thickness of the

metal is 1 pm. The transmission of the filter was measured using a Fourier-transform

spectrometer [4], with the effects of substrate and polymer compensated through a

normalization measurement.

For the computer simulation, a normally incident field with a plane wave front and

a Gaussian amplitude profile is used. The polarization of the incident electric field

Ej is in the J direction. With FD-TD, the transmission coefficient of the i polarized

wave is calculated. The transmission coefficients obtained are further attenuated by

5 dB to account for the experimental losses and the finite resistivity of the metal.

The comparison between the experimental measurement and FD-TD is shown in
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Figure 3-2: Comparison between FD-TD and experimental results of a 3D MDPC IR

bandstop filter.

Figure 3-2. The solid line represents the experimental results and the dashed line

shows the FD-TD results. Both display an onset of the stop band slightly below

1000 cm-'. However the calculated stop band has a smaller bandwidth and ends at

approximately 1800 cm' instead of the measured 2500 cm- 1. The difference between

the two may be due to dispersion of the dielectric, metal losses and dielectric losses

which are not accounted for by FD-TD. Also the discretization error from the grid-

ding process of FD-TD may have caused the discrepancy. The small features of the

experimental results are also due to potential incomplete normalization measurement

of the polymer substrate. The comparison demonstrates that FD-TD is theoretically

applicable to predict the electromagnetic behavior of photonic crystal filters in the IR

spectrum and establishes the reliability of FD-TD as a design tool in the IR region.
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3.2 Parametric Study at Normal Incidence

In order to analyze the dual stop bands of a MDPC structure, a parametric study is

carried out. The geometry of the filter under study is based on the design in [6] and

has three layers (Figure 3-3). Each layer consists of periodic metal patches embedded

in the middle of a dielectric. It was found that with the metal at the middle of the

dielectric of each layer, the performance of the filter improves, as the top half layer of

the dielectric acts as a superstrate. The whole structure consists of three such layers,

which are aligned along the z-axis. The metal is assumed to be perfectly conducting

and the dielectric constant of the substrate for the parametric study is 2.3.

z

S

metal patch

A~gd

x

Figure 3-3: Geometry of the design of one layer used in the parametric study and
final design. Circular metal discs are arranged in a triangular grid, and are embedded
in a dielectric substrate of E, = 2.1, 2.3.

A a-directed TE pulse with a Gaussian amplitude profile and modulated by a
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cosine function centered at 4000 cm 1 is used as the incident wave. Circular patches

are discretized into 40 A-steps across the diameter to minimize the discretization

error [11]. The spacing between the centers of the circular patches is kept at 2pm

throughout the four series, and the diameter of the patches is varied from 1 pam to

1.58 pm which corresponds to different percentage filling of metal from 25 - 60 % in

a unit cell in each series.

The results from the normal incidence simulation are shown in Figure 3-5 to 3-8.

The y-axes of the graphs show the transmission coefficients in dB and the x-axes show

the wave number in k = -, (cm 1 ).

0

-10

0
U
0 -20
0

EU -3

-40 L
0 1000 2000 3000 4000

Wavenumber (cm-1)

5000

Figure 3-4: Transmission
S = 2 pm, d = 1.58 pm.

coefficients of bandstop filter with one layer of metal screen.
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Figure 3-4 shows the transmission of one layer and only one major stop band

is seen, which correlates with the separation between the elements. From Series A

to D, the separation between the layers increases from 0.72 pm to 1.44 pm in four

steps. In Figure 3-6 to 3-8, dual stop bands are observed. Although the structure

is complicated, the formation of the stop bands can be explained. Two types of

resonances are important in the formation of the stop bands. One is the resonance

along the propagation direction, another one is the periodicity of the elements within

the same layer.

Periodicity on the periodic surfaces contributes to the second stop band and the

center frequency is determined by both the diameter of the circular patches and the

spacing between the patches. The lattice constant, or the center to center separation

S, determines the frequency at which the higher-order mode will start propagating.

As the higher-order modes start propagating, the energy is diverted and creates a

stop band in the fundamental mode. The patch itself acts as a reflector and as the

filling percentage increases from 25% to 60%, the bandwidth of the second stop band

can increase to over 50%.

The first stop band, on the other hand, only becomes apparent in the multilayer

configuration and is not prominent for the case of one layer (Figure 3-4). The vertical

resonance can be represented by a quarter-wave stack, because the metallic layer and

the dielectric layer act as stack with alternating refractive indices. Since the metallic

layer is not entirely filled (60 % maximum), the analogy is not complete. Nonetheless,

there is a strong correlation between the two. Tabulated results (Table 3.1) show the

shift of the resonance towards lower frequencies as the size of the patches increase.

1
keff = -

As the inter-layer spacing further decreases, the dual stop bands merge to form
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Figure 3-5: Series A. Transmission coefficients of bandstop filters with three aligned
layers of metallic screens. S = 2 pm, h = 0.72 pm.

0

-0

0
02

-10

-20

-30

-40 L
0 1000 2000 3000 4000

Wavenumber (cm-1)
5000

Figure 3-6: Series B. Transmission coefficients of bandstop filters with three aligned
layers of metallic screens. S = 2 ym, h = 0.96 ym.
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Figure 3-7: Series C. Transmission coefficients of bandstop filters with three aligned

layers of metallic screens. S = 2 pm, h = 1.14 ym.
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Figure 3-8: Series D. Transmission coefficients of bandstop filters with three aligned

layers of metallic screens. S = 2 pm, h = 1.44 ym.
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h

0.72 pm

0.96pm

1.14 pm

1.44 pm

keff (calculated)

2289 cm 1

1717 cm- 1

1479 cm- 1

1441 cm 1

Table 3.1: Resonance frequency based on calculation.

an ultra wide stop band with a percentage bandwidth in excess of 70%.

To show the performance quantitatively, the relative bandwidth of each of the stop

bands and the minima of the transmission coefficients are tabulated in Table 3.2.
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v2c(cm-1) Av 2 T2,min(dB)Series

A, d=1.00 pm.

A, d=1.17pm

A, d=1.42pm

B, d=1.58tm

B, d=1.00pm

B, d=1.17[tm

B, d=1.42pm

B, d=1.58pm

C, d=1.00pm

C, d= 1. 17 pm

C, d=1.42 pm

C, d=1.58 pm

D, d=1.00 pm

D, d=1.17 pm

D, d=1.42[pm

D, d=1.58 pm,

N.A.

N.A.

N.A.

N.A.

N.A.

N.A.

2030

1950

N.A.

N.A.

1710

1660

N.A.

N.A.

N.A.

1330

N.A.

N.A.

N.A.

N.A.

N.A.

N.A.

0.42

0.57

N.A.

N.A.

0.23

0.47

N.A.

N.A.

N.A.

0.29

N.A.

N.A.

N.A.

N.A.

-5

-8

-15

-20

-3

-6

-12

-17

-2

-4

-8

-12

3330

3070

2850

2460

3460

3450

3420

3390

3320

3250

3230

3340

3240

3170

3150

3140

0.37

0.56

0.74

0.70

0.16

0.21

0.25

0.27

0.15

0.21

0.32

0.42

0.25

0.35

0.49

0.57

Table 3.2: Relative bandwidth and minimum transmission coefficients of the bandstop
filters (parametric study).
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3.3 Effects of Metal Thickness and Dielectric Con-

stant of Substrate

3.3.1 Metal with Finite Thickness

Instead of the 3D element shown in Figure 3-1, the new IR filter features thin metal

patches instead. With thin metal, the choice of dielectric substrate is wider as the

substrate will not be confined to a planarizing one. This is because the deposition of

a thinner metal layer results in a smoother surface. As shown later in this section, the

permittivities of the dielectric substrate has a direct effect on the angular dispersion

properties of the filter. The simulated structure consists of periodic square patches

in a square grid. The sides of the patches are of length 3 cm and the sides of the

grids are 6 cm. A metal patch with no thickness is simulated with only E, and Ey to

model the patch. A patch with finite thickness is modeled here by having an aspect

ratio between thickness and width of 1: 10 and contains the value of E, as well. The

result is shown in Figure 3-9.

The changes in bandwidth and the position of resonance are very small between

the two. Thus the calculation of the designs are based on infinitely thin metal patches.

3.3.2 Dielectric with High Permittivity

As the filter is required to perform its function over a wide range of angles the angular

performance is very important. An analysis has been carried out regarding the choice

of the dielectric constant of the substrate and superstrate and the trade off between

high and low dielectric constant is discussed. Figure 3-10 shows an incident plane

wave at O6 = 450 and the output angles for dielectrics with different permittivity are

Ot = 18.8' and t2 = 29'. It is seen that as the dielectric constant increases, the filter
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Figure 3-9: Infinitely thin metal vs. metal with finite thickness.

will be subjected to less angular dispersion. Oblique incidence calculations are carried

out for the previous structure. The dielectric constants for comparison are chosen to

be 2.3 and 4.8. Figure 3-11 and Figure 3-12 show the distortion of the shape of the

stop band as the angle of incidence increase. While a higher index preserves the stop

band characteristics over a wider range of angles, it also makes the fabrication of the

MDPC more difficult. Higher dielectric constants also introduce higher out-of-band

losses.

3.4 Optimal Design of Filter and Performance at

Oblique Incidence

This section presents the final design of the IR filters which have a substrate with a

dielectric constant of 2.1. The spacing between the elements is 3.2 yum, the separation
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t = 18.80 for Er = 4.8

Ot2 = 290 for er = 2.1

Figure 3-10: Internal angles for superstrates with different permittivities.

between the layers is 2.7 pm and the diameter of the disk is 2.6 pm.

c, = 2.1

S = 3.2 pm

h = 2.7 Am

d = 2.6 pm

Two implementations are analyzed, one of them uses aligned metal patches and the

other one uses a face-center-cubic structure. The structures have a six-fold symmetry

along the azimuthal direction. The azimuthal angles 4 = 00 and # = 90' represent the

best and worst cases as the azimuthal angles varies and the transmission coefficients

at different polar angles are calculated for different polarization (TE and TM). It is

found that the alignment of the thin metallic patches does not change the properties

of the stop bands very much.
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Figure 3-11: Transmission characteristics with substrate having c, = 2.3.
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Figure 3-12: Transmission characteristics with substrate having E, = 4.8.
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3.4.1 Aligned Structure

Figure 3-14 and Figure 3-15 show the transmission characteristics of the filter upon

TE and TM incidence with azimuthal angle # = 00. We can see that the dual stop

band for the TE incidence persists from 0' to 600. The upper edge of the low frequency

band is more susceptible to the angular dispersion, and it shifts up the spectrum as the

polar angle increases. This can be due to the low dielectric constant of the substrate

and also the blue shift because of the vertically aligned stack, analogous to a dielectric

mirror. For the second band, there is a same tendency for the upper edge to shift up

the spectrum. For TM incidence, there is a significant degradation of performance for

0000
0 )

0 00
x

Figure 3-13: Azimuthal angle of incidence # with respect to the filter.

the second band. This might be due to the thin metallic elements which are incapable

of scattering the incident EM wave with the polarization perpendicular to the metal

at large polar angles. For the first resonance, both the lower edge and upper edge of

the band experience a blue shift as the incident angle goes higher. The quantitative

performance of the filter is presented in Table 3.3, which show the relative bandwidth

and the minima of the transmission spectrum.

Figure 3-16 and Figure 3-17 show the results of the transmission characteristics of

the filter upon TE and TM incidence with azimuthal angle # = 90'. The first stop
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band, for both TE and TM exhibit similar characteristics as when the azimuthal

angle of incidence is # = 00. The second stop band has different characteristics

because of the azimuthal asymmetry. Consequently, the stop band is only partial and

subjected to variation upon changing the polar angle of incidence.

In conclusion, for the aligned structure, with TE incidence, the stop band trans-

mission is below -10 dB for 8 - 12 tm and the stop band at higher frequencies has a

partial stop band from 3 - 5 pm.
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Figure 3-14: Transmission coefficient for TE incidence, 0 = 00 - 600, # = 00.
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Figure 3-15: Transmission coefficient for TM incidence, 0 = 00 - 600, 4 = 0'.
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Figure 3-16: Transmission coefficient for TE incidence, 6 = 0' - 600, # = 90'.
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Figure 3-17: Transmission coefficient for TM incidence, 0 = 00 - 60', # = 90'.
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Series vic(cm- 1) ' Ti,min(dB) v2c(cm- 1 ) "V2  T2,min(dB)

TE 0 = 0= 0' 1035 0.45 -15 2210 0.51 -52

TE 9 = 22.50 ' = 00 1065 0.48 -16 2215 0.24 -44

TE 0 = 450 = 00 1150 0.57 -20 2320 0.29 -46

TE 9 = 600 = 0 1035 0.75 -25 2340 0.32 -42

TM 9 = 00 = 00 1030 0.47 -16 2185 0.50 -70

TM 9 = 22.5 4 = 0' 1080 0.46 -16 2155 0.50 -45

TM 0 = 45' #= 0* 1220 0.49 -19 N.A. N.A. N.A.

TM 9 = 600 = 0' 1430 0.60 -25 N.A. N.A. N.A.

TE 9 = 00 = 90' 1035 0.45 -16 2180 0.49 -60

TE 0 = 22.50 = 90* 1060 0.49 -17 2365 0.60 -46

TE 9 = 450 = 90' 1150 0.57 -20 2025 0.17 -33

TE 9 = 600 = 90' 1200 0.67 -20 N.A. N.A. N.A.

TM 9 = 0 # = 90 1025 0.44 -15 2225 0.52 -55

TM 9 = 22.50 = 90' 1080 0.44 -15 1975 0.35 -37

TM 0 = 45' #= 900 1225 0.45 -15 N.A. N.A. N.A.

TM 9 = 600 = 900 1275 0.43 -25 N.A. N.A. N.A.

Table 3.3: Relative bandwidths of the dual stop bands at different incident angles

(aligned structure).
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3.4.2 Face-Center-Cubic Structures

Figure 3-18: Relative position of the metal patches at different layers for a face-center-
cubic structure.

In this section a second implementation of the filter is presented. In the aligned

design, the metal patches are stacked on top of each other, hence the performance for

different azimuthal and polar angle of incidence may degrade as the cross section of

metal as seen by the incident wave decreases.

For the face-center-cubic (fcc) case, the metal patches are arranged such that

between each layer there is an offset. The vertical period comprises three layers 1,

2 and 3. The relative position of the labeled metal patches is shown in Figure 3-18,

which indicate the center position of the patches. This configuration is expected to

have a more consistent performance for different azimuthal angles of incidence. The

unit cells used are shown in Figure 3-19.

For TE incident with # = 00, the pass band up to 12 pm has a transmission

20

Figure 3-19: Unit cell for face-center-cubic structure.
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coefficient of less than -3 dB in the case of normal incidence and the stop band from

8-12 pum has a transmission coefficient of less than -15 dB. Due to the offset between

layers, the lower edge of the second stop band is not as steep as the aligned one.

For TM incidence with # = 00, no significant improvement is observed. Similar

to the aligned case, the second stop band degrades very fast and the transmission

coefficient starts oscillating above the -10 dB level as the polar angle is off normal.

Both TE and TM at # = 90' incidence show an improvement over the aligned

structure. The second stop band appears to be more stable over a wider range of

polar angles. Overall, the face-center-cubic structure offers slightly more consistent

transmission characteristics along the azimuthal direction.

For comparison, the center frequencies, relative bandwidth, minimum transmission

coefficient in (dB) for the face-center-cubic implementations are tabulated in Table

3.4.
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Figure 3-20: Transmission coefficient (fcc) for TE incidence, 0 = 0 - 60', # = 0'.
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Figure 3-21: Transmission coefficient (fcc) for TM incidence, 0 = 0' - 60', # = 00.
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Figure 3-22: Transmission coefficient (fcc) for TE incidence, 0 = 0' - 60', # = 90'.
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Figure 3-23: Transmission coefficient (fcc) for TM incidence, 6 = 0' - 600, # = 90'.
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Series

TE6= 0

TE6= 2

TE6 = 4

TE 6= 6

TM 6 =

TM 6 =

TM 6 =

0

2.50

50

00

00

22.50

450

q5=

00

00

00

00

00

00

0 0

vic(cm- 1)

1040

1070

1170

1170

1040

1070

1215

AV,

0.46

0.47

0.56

0.60

0.46

0.47

0.47

Ti,min(dB)

-15

-16

-18

-22

-15

-15

-18

2275

2275

2220

2520

2275

2350

N.A.

v2c(cm- 1) A 2

0.55

0.24

0.29

0.38

0.55

0.13

N.A.

-52

-40

-44

-33

-67

-35

N.A.

A

TM 0 = 600 p = U 143U U.5 -U iN.A. iN.IA. iN..

TE 6 = 00 = 900 1040 0.46 -15 2275 0.55 -67

TE 6 = 22.50 = 90' 1065 0.50 -16 2675 0.32 -48

TE 6 450 # = 900 1160 0.62 -18 2875 0.43 -37

TE 0 = 600 = 900 1200 0.67 -22 2825 0.48 -33

TM 6 = 00 = 90' 1040 0.46 -15 2275 0.55 -52

TM 6 = 22.50 = 90 1085 0.43 -15 2340 0.31 -42

TM 6 = 450 = 90 1225 0.45 -17 2900 0.40 -48

TM 6 = 600 = 90 1270 0.39 -20 2580 0.28 -44

Table 3.4: Relative bandwidths of the dual stop bands at different incidence angles

(fec structure).

T2,min(dB)
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Chapter 4

Hybrid Method for Multilayer

Analysis

In this chapter, the formulation of a hybrid method for treating multilayer structures

is presented. The transfer matrix method is used in conjunction with the FD-TD

calculation.

The transfer matrix method has been applied to many circuit and transmission line

problems. Application to the cascade of metallic periodic screens has been discussed

in [17, 18, 19]. In [20], computation of the scattered fields from free-standing metal

patches was computed by frequency domain methods, combined with the matrix

formulation given in [17], where the cascade of a metal screen with different dielectric

slabs was analyzed. Cascading of grating screens and formulation for shifted units

was presented by Hall [18]. The generalized scattering matrix [19] takes into account

higher-order modes and evanescent coupling between closely spaced layers. Cascading

of multiple metal screens with dielectric slabs was also analyzed.

The elements of the scattering matrix consist of the forward scattering and the

backward scattering coefficients of different modes and are usually calculated by
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means of frequency domain method [21], such as the Method of Moments. Since

these methods are frequency domain methods, they can only calculate the scattering

coefficients for one frequency at a time. Also, careful selection of basis functions is

needed for complicated geometries. The FD-TD technique allows the calculation of

the scattering coefficients over a wide frequency spectrum with one simulation and can

handle complicated multilayer geometries. With the hybrid method, which combines

FD-TD with the transfer matrix method, multi-layer results can be synthesized from

the scattering coefficients of a single layer. Dielectric substrates and layer thickness

can also be varied without running a full EM simulation.

4.1 Generalized Scattering Matrix

The generalized scattering matrix describes the scattering properties of a single filter

layer. In general, a multilayer filter has layers of metal screens and dielectric slabs

of various permittivities E, and thicknesses d, (Figure 4-1). The problem can be

separated into a "metallic part" and "dielectric part". For the metallic part, FD-TD

is used. For the dielectric parts, analytic coefficients can be used, as described later

in this chapter. The results are then combined by using the transfer matrix method.

To obtain the scattering coefficients from a FD-TD simulation, we can consider a

field incident on the metal screen with wavevector i defined according to Figure 4-2.

Ej and ki can be expressed as:

= ~iki -

i = kjx& + kjyp + kizz (4.1)

Based on Fourier transform of the time domain scattered electric field, the scattered
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z

Metallic screen

z = 0

dn

Figure 4-1: General structure of a multilayer filter.

field in the frequency domain can be found. The scattered fields, however, cannot be

represented by a single k-vector, because the periodic surface creates a grating effect

in both X and Q direction when the frequency is high enough. Mathematically, the

scattered field E can be represented as a summation over the spatial harmonics the

Floquet modes,
00 0

s= S ( E"ek 7
m=-oo n=-oo

(4.2)

where k, is the wavevector of the scattered wave. By phase matching on the periodic

Co, [to
Region

Region

kr

7,

1

2

el, p1

62, A2

6, pi

En, yan

60, [to

Region 1

Region n
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z

y

x

Figure 4-2: Orientation of incident wavevector ki.

surface, the wavevectors r" can be written in component form as:

F"" (kix + 2m + (k±y + 2 9r p + k""2
T Px Py

(4.3)

where m and n are integers and describe the spatial modes and

k"="=k2 k 2sx(mn)+ s(mn) (4.4)

with k = wVi7F describing the dispersion relation in the scattered medium. Each k1

can be interpreted as a plane wave travelling at a particular direction governed by the

phase matching condition. The direction and hence the corresponding polar angle 0

and azimuthal angle <$ are frequency dependent. To obtain the scattering coefficient

for each individual mode, we can integrate the scattered fields times the conjugates
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of different spatial harmonics on the observation plane in the FD-TD computation

domain.

E" 1" = JdxdyEseimX e- VY (4.5)

-00

10 r 1
202

Medium 1

x
Medium 2

20

T-20

--10

Figure 4-3: Scattering of different modes from a periodic surface.

The scattering process can be represented graphically as shown in Figure 4-3,

where the normally incident wavevector is 1j, the reflected wavevectors are k7"' and

the transmitted wavevectors kt7. Here, m and n denote the index of the mode. Only

the wavevectors on the x - z plane are shown here (n = 0).

A generalized scattering matrix takes into account the interactions between all the

modes of the unit layer. But in practice the matrix can represent only a truncated sum

of modes. Depending on the geometry, the incident wave polarization, the incidence

angle and the proximity between successive layers, a rule for determining the number

of modes included can be set. For normal incidence with elements that are insensitive

to polarization, such as circular patches, a circle in the kx - ky plane can be used to
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select the number of modes to be computed. Modes with indices m, n that are within

the boundary of the circle can be included into the generalized scattering matrix

(Figure 4-4). For example, in the case of normal incidence we can set the radius to

be ulnity when the periodic surfaces are far apart.

n

(0,1)

(-1,0) (0,0) (1,0) rn

(0,-1)

Figure 4-4: Truncated sum of modes. Modes are computed if they fall within a circle

of finite radius.

For the interaction between the included modes, we can write down a generalized

scattering matrix representing the scattering at each frequency of interest:

EF1 Sl S12 1 (4.6)

LE2s j L S21 S22 J L i

The generalized scattering matrix is similar to the S matrix of microwave net-

working, except that the elements of the matrix are themselves matrices and may

represent cross-mode scattering. Si and S22 are the complex backward scattering

matrices and S12 and S21 are the complex forward scattering matrices. The dimension

of the generalized scattering matrix depends on the number of modes included. The

column matrix on the left-hand side represents the scattered fields and the column
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Eli E2i

1s 2s

Figure 4-5: Graphical representation of the scattering matrix.

matrix on the right-hand side represents the incident fields. In order to cascade the

matrices, we have to put the field quantities from the same medium within the same

column vector, and form the transfer matrix equation:

[2s T1 T12 Eli

E2i T21 T22 Eis

The elements or submatrices can be calculated as follows:

11 21 ~ 22 ' S12 ' 1

=-1
T12 = S22 - S12

=-1 =
T21 = -S12 - Sn1

T22 = S 12

(4.8)

and the elements of S are related back to T by

11i -T22 ' 21- =--1 =

S1 2 = T22

S21 = Tn -T1 -Y22 - 21
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S 2 2 =T12 - T22

(4.9)

In matrix (4.7), the column matrix on the left-hand side represents the field quantities

from medium 2 and the column matrix on the right-hand side represents the field

quantities of medium 1. The vector notation implies that each column vector consists

of the field quantities of the different modes.

The matrix S is the generalized scattering matrix and consists of sub-matrices

smnpq. The sub-matrix Smnpq on the diagonal represent scattering between the same

mode and the off diagonal ones represent the cross-mode interaction. To investigate

the properties of a particular sub-matrix, we can consider an interaction between a

incident pq mode and the scattered mn mode. The superscript H represents a TE

wave, while V represents a TM wave. The sub-matrices take into account of both

co-polarization and cross-polarization. The sub-matrices of the scattering matrices

are related to the field quantities by:

EH(mn) [=HH =HV ~ H(pq)
1s mnpq mnpq i

EV(mn) =H VV (.0
L E2 s j L mnpq Smnpq _j [ 2i _j

To relate the sub-matrices to the scattering coefficient from the scattering coefficients

calculated by FD-TD, we can write Smnpq in terms of a scattering matrix. For the

case of TE-TE scattering,

E1j(mn) S11 S12  E(pe) 1
(mn) H) Ls(4.11)

LE2s i 321 S22 jLE2i _

The elements are no longer matrices but complex scattering coefficients that are

obtained from the FD-TD code.
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4.2 Transfer Matrix for Dielectric

In the transfer matrix equation, T may either be the transfer matrix of a metallic filter

layer or a dielectric slab. For dielectric, the reflection and transmission coefficient can

be analytically derived [16]. Consider the layered medium in Figure 4-1. The wave in

each layer consists of an upgoing wave and a downgoing wave, at each interface, the

tangential electric and magnetic field has to be continuous, and the matrix equation

which governs the amplitudes of the waves is

E"1" 1 R21 1 Emn
2: = -(1 + P21) (4.12)

E mn 2 1 R21 Em"

which accounts for the boundary between each different dielectric. In the above

equation,

p1 62kiz (4.13)
i2 cl2z

for TE modes and
TM =#2kiz (4.14)P21 

- a1 k2z

for TM modes.

R21 - P21 (4.15)
1 + P21

is the Fresnel reflection coefficient. Inside the dielectric, the propagation matrix is:

E n e-ik2d2 0 E16
2s _i (4.16)

Em" 0 eik2d2 Em"

With both the magnitude and the phase, the effects of the separation between

the filters can be correctly calculated. The complex scattering coefficients from the

FD-TD simulation and the analytic expressions permit a hybrid wide band matrix
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method. The above formulation allows the cascade of multilayer filters with arbitrary

incident plane wave and changes the scattering equation

Ps = _Ej(4.17)

to a transmission equation:

E 2 = T Ei (4.18)

Thus for a multilayer structure,

En = Tn - T,n-1 ... T1,1_ 1 ... T 1 ,o -Eo (4.19)

However, there are some limitations of the matrix methods. First of all, it re-

quires the same spatial periodicity for each layer to be cascaded. Also, the accuracy

of the calculation depends on the amount of higher-order modes included. When

only interactions of fundamental modes are involved, and the geometry is simple,

approximation formulas can be used. But when interactions of higher-order modes

are considered, or when the geometry of the metal screen is complicated, an accurate

EM modeling is needed to obtain the scattering coefficients and the matrix method

has to take into account the higher-order modes.

In the next chapter, the results based on the hybrid method are presented.
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Simulation Results Based on

Hybrid Method

In this chapter, the results of calculations based on the hybrid method are presented.

Transmission coefficients of cascaded metal screens for both normal and oblique in-

cidence are computed by the hybrid method. One of the examples is a dichroic plate

reported in the literature and the other example is a structure with periodic square

patches. The hybrid method results are compared to the hybrid MoM and full FD-TD

simulation.

5.1 Dichroic Plate

In [22], a dichroic plate for radioastronomical use is reported. The structure of the unit

filter is shown in Figure 5-1. The specification of the filter is such that it can reflect

the low frequencies and transmit the high frequencies with low loss. A sandwich

design is used to allow a relatively flat pass band performance. The cross section

of the filter is shown in Figure 5-2. In [22], the transfer matrix method is used in
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3.3mm

)x

4.67mm
4.1mm

I 2.9mm

Figure 5-1: Geometry of the periodic surface used in the dichroic filter.

conjunction with Method of Moments. A hybrid approach described in Chapter 4 is

used here to compare the results. The oblique FD-TD code is used to simulate the

scattering of a single layer at 450 and the scattering coefficients are then used together

with the transfer matrix. The comparison between the two is shown in Figure 5-4

and Figure 5-5. The horizontal axes represents the frequency in GHz and the vertical

axes of the upper plots are the transmitted power normalized to 1. The lower plots

show the phase of the transmitted plane wave. Both TE and TM incidence is used

for a polar angle of 450 and azimuthal angle of 00.

h= 25pLm e,. = 3.3

h =4mm e,. = 1.1

Figure 5-2: Cross section of the dichroic plate sandwich filter.

The results of the two methods show a good agreement. The magnitude and the

phase for both polarizations correspond well to each other. The discrepancy may be

due to the finite resolution of the discretization processes.
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Xz

x

Figure 5-3: Orientation of the incident wave

5.2 Square Patches

In this section, the formulation presented in the previous chapter is used to calculate

the transmission characteristics of a two layer structure. The geometry of the filter

is shown in Figure 5-6. It consists of cascaded 3 cm square patches in a square lattice

with periodicity of 6 cm. The spacing between the two screens is also 6 cm. Since the

elements are patches instead of apertures, the structure acts as a low pass filter in

the base band and as a bandstop filter around the primary resonant frequency.

A TE plane wave with O = 0* is used as the incident wave, and the effective

spectrum is from 0.1 GHz to 10 GHz, which is around twice the fundamental resonant

frequency.

The main interest is the transmission of the fundamental mode. When the fre-

quency is smaller than the first resonant frequency, which occurs at approximately

w = A/2, the interaction is expected to be dominated by the (0, 0) mode. But as the

frequency goes higher, the high-order modes will start to propagate and will couple
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Figure 5-4: Comparison between two different hybrid methods for TE incidence.
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4-

Frequency (GHz)

Frequency (GHz)

Figure 5-5: Comparison between two different hybrid methods for TM incidence.
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Degenerate modes Degeneracy
(0,0) 1

(1,0) (-1,0) 2
(0,-1) (0,1) 2

(-1,-i) (-1,1) (1,-1) (1,1) 4

Table 5.1: Degeneracy of modes for normal incidence

back to the fundamental mode. To form a finite generalized scattering matrix, a total

of nine modes is included. Since the scattering elements are square patches, several

modes are degenerate (Table 5.2), which allows a simpler operation on the scattering

matrices.

The magnitude of eikzz is plotted against frequency for different modes in Figure 5-

7. Since the separation is the same as the center-to-center spacing of the metal

element, the effect of evanescent waves is small. The cutoff frequencies of the higher-

order modes are useful in interpreting the region in which the higher-order modes

are coupled back to the (0, 0) mode. The co-polarized transmission coefficients SIH

for different modes are plotted in Figure 5-8. Among the co-polarized modes, (0, 1)

has the smallest contribution. The cross-polarized transmission coefficients S2V for

different modes are plotted in Figure 5-9, The contributions of the modes are summed

up and the comparison is shown in Figure 5-10, where the solid line represents the

full-wave FD-TD solution, and the rest are the hybrid method results. The dotted

line corresponds to the matrix multiplication of the (0, 0) mode term only. It is

observed that the transmission below the fundamental resonant frequency is basically

determined by only the (0, 0) mode. The dash-dotted line represents the (0, 0) mode

and the coupling between the (0, 0) and (1, 0) mode, which explains the secondary

nulls at around 6 GHz. The last result is the closest when compared to the FD-
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S =6cm

w =3cm

Top view

6i1 = 00

d =6cm

C tio

Cross section

Figure 5-6: Geometry of the cascaded metal screen used in the hybrid method.
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TD calculation. The inaccuracy of the hybrid method around the double nulls at

around 6.5 GHz may be due to the inaccuracy of the scattering coefficients. As the

higher-order modes start to change from evanescent to propagating, the absorbing

boundary cannot absorb the grazing incident wave well, and it causes inaccuracies in

the calculation of the coefficients.
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Figure 5-7: Magnitude of vertical propagation factor for different modes.
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Figure 5-8: Transmission coefficients of different modes (co-polarized).

72



CHAPTER 5. SIMULATION RESULTS BASED ON HYBRID METHOD

(0,0)
0

-50

-100

0-150

-200
0 5 10

Freq (GHz)

(1,0)

-50

U-100

-150

-200
0

0 
(0,1)

S-10

-20

-30

-40

-50
0 Freq (Hz) 10

(1, 1)

S -50

-100

-150

-200
5 100 0 5

Freq (GHz) Freq (GHz)

Figure 5-9: Transmission coefficients of different modes (cross-polarized).
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Chapter 6

Conclusion

In this thesis the oblique incidence Finite-Difference Time-Domain technique for pe-

riodic surfaces is used to calculate the transmission characteristics of an infrared

bandstop photonic crystal filter. The relation between the bandwidth and filling per-

centage of the unit cell is studied by the variation of parameters. The mechanisms

of the dual stopbands are investigated. The separation between the layer and the

relative size of the metal patches determines the position and bandwidth of the lower

stopband, and the periodicity across the same surface determine the position of the

upper stopband. A higher metal filling percentage also enhances the bandwidth.

The knowledge gained is used to design a bandstop filter at the band 3 - 5 pum and

8 - 12 tm. The final design features a stopband with transmission coefficients below

-10 dB for the major polarization from an incident angle of 0* to ±60' for the band

8 - 12 ptm and a partial stopband for the 3 - 5 pam band.

Using FD-TD in conjunction with a transfer matrix method, a hybrid method

is employed to study the effects of higher-order interaction within photonic crystal

bandstop filters. Using a generalized scattering matrix and transforming it into a

transfer matrix the effects of individual modes can be studied and analyzed. It is
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found that, for a multilayer filter, though the propagation of the fundamental mode

is straightforward below the first resonant frequency, the propagation of higher-order

modes can couple back to the fundamental mode for high frequency and can not be

neglected. The same approach is used for the oblique incidence case, in which the

inclusion of higher-order modes improves the accuracy for high frequencies.

Symmetries of the filter are exploited to facilitate the computation of the matrix

elements. For normal incidence, the degeneracies of different modes are more pro-

nounced while for oblique incidence, symmetries can be found only on both sides of

the incidence planes.

Future work should include the analysis of very close coupling of the filter element

and capturing of the evanescent waves in the FD-TD computational domain. Since the

evanescent waves decay exponentially, an exponential discretization over the surface

of the filter may allow more accurate calculation of the amplitudes of the matrix

elements.

A better absorbing boundary can eliminate the reflection of incident waves at

grazing angles which happen at the transition when a mode turns from evanescent

to propagating. The present boundary creates reflected waves at the transitional

frequencies and may give rise to inaccurate scattering coefficients.

An improvement of the coefficient calculation may also help to enhance the re-

solving power of the hybrid method and reveal the finer details which for now are

captured only by the full-wave method.
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