4,064 research outputs found
Measurement of Trace I-129 Concentrations in CsI Powder and Organic Liquid Scintillator with Accelerator Mass Spectrometry
Levels of trace radiopurity in active detector materials is a subject of
major concern in low-background experiments. Procedures were devised to measure
trace concentrations of I-129 in the inorganic salt CsI as well as in organic
liquid scintillator with Accelerator Mass Spectrometry (AMS) which leads to
improvement in sensitivities by several orders of magnitude over other methods.
No evidence of their existence in these materials were observed. Limits of < 6
X 10^{-13} g/g and < 2.6 X 10^{-17} g/g on the contaminations of I-129 in CsI
and liquid scintillator, respectively, were derived.These are the first results
in a research program whose goals are to develop techniques to measure trace
radioactivity in detector materials by AMS.Comment: Proceedings of 10th International Conference on Accelerator Mass
Spectrometr
Absence of the zero bias peak in vortex tunneling spectra of high temperature superconductors?
The c-axis tunneling matrix of high-Tc superconductors is shown to depend
strongly on the in-plane momentum of electrons and vanish along the four nodal
lines of the d(x^2-y^2)-wave energy gap. This anisotropic tunneling matrix
suppresses completely the contribution of the most extended quasiparticles in
the vortex core to the c-axis tunneling current and leads to a spectrum similar
to that of a nodeless superconductor. Our results give a natural explanation of
the absence of the zero bias peak as well as other features observed in the
vortex tunneling spectra of high-Tc cuprates.Comment: 4 pages 3 figures, minor corrections, to appear in Phys Rev
Effect of B-site Dopants on Magnetic and Transport Properties of LaSrCoRuO
Effect of Co, Ru and Cu substitution at B and B' sites on the magnetic and
transport properties of LaSrCoRuO have been investigated. All the doped
compositions crystallize in the monoclinic structure in the space group
indicating a double perovskite structure. While the magnetization and
conductivity increase in Co and Ru doped compounds, antiferromagnetism is seen
to strengthen in the Cu doped samples. These results are explained on the basis
of a competition between linear Co-O-Ru-O-Co and perpendicular Co-O-O-Co
antiferromagnetic interactions and due to formation of Ru-O-Ru ferromagnetic
networks
Constructing 3D crystal templates for photonic band gap materials using holographic optical tweezers
A simple and robust method is presented for the construction of 3-dimensional crystals from silica and polystyrene microspheres. The crystals are suitable for use as templates in the production of three-dimensional photonic band gap (PBG) materials. Manipulation of the microspheres was achieved using a dynamic holographic assembler (DHA) consisting of computer controlled holographic optical tweezers. Attachment of the microspheres was achieved by adjusting their colloidal interactions during assembly. The method is demonstrated by constructing a variety of 3-dimensional crystals using spheres ranging in size from 3 µm down to 800 nm. A major advantage of the technique is that it may be used to build structures that cannot be made using self-assembly. This is illustrated through the construction of crystals in which line defects have been deliberately included, and by building simple cubic structures
Generalised second law of thermodynamics for interacting dark energy in the DGP brane world
In this paper, we investigate the validity of the generalized second law of
thermodynamics (GSLT) in the DGP brane world when universe is filled with
interacting two fluid system: one in the form of cold dark matter and other is
holographic dark energy. The boundary of the universe is assumed to be enclosed
by the dynamical apparent horizon or the event horizon. The universe is chosen
to be homogeneous and isotropic FRW model and the validity of the first law has
been assumed here
Thermodynamics of charged and rotating black strings
We study thermodynamics of cylindrically symmetric black holes. Uncharged as
well as charged and rotating objects have been discussed. We derive surface
gravity and hence the Hawking temperature and entropy for all these cases. We
correct some results in the literature and present new ones. It is seen that
thermodynamically these black configurations behave differently from
spherically symmetric objects
Quasiparticle excitation in and around the vortex core of underdoped YBa_2Cu_4O_8 studied by site-selective NMR
We report a site-selective ^{17}O spin-lattice relaxation rate T_1^{-1} in
the vortex state of underdoped YBa_2Cu_4O_8. We found that T_1^{-1} at the
planar sites exhibits an unusual nonmonotonic NMR frequency dependence. In the
region well outside the vortex core, T_1^{-1} cannot be simply explained by the
density of states of the Doppler-shifted quasiparticles in the d-wave
superconductor. Based on T_1^{-1} in the vortex core region, we establish
strong evidence that the local density of states within the vortex core is
strongly reduced.Comment: 5 pages, 3 figure
Birkhoff's theorem in the f(T) gravity
Generalized from the so-called teleparallel gravity which is exactly
equivalent to general relativity, the gravity has been proposed as an
alternative gravity model to account for the dark energy phenomena. In this
letter we prove that the external vacuum gravitational field for a spherically
symmetric distribution of source matter in the gravity framework must be
static and the conclusion is independent of the radial distribution and
spherically symmetric motion of the source matter that is, whether it is in
motion or static. As a consequence, the Birkhoff's theorem is valid in the
general theory. We also discuss its application in the de Sitter
space-time evolution phase as preferred to by the nowadays dark energy
observations.Comment: 5p
Birkhoff's Theorem in f(T) Gravity up to the Perturbative Order
f(T) gravity, a generally modified teleparallel gravity, has become very
popular in recent times as it is able to reproduce the unification of inflation
and late-time acceleration without the need of a dark energy component or an
inflation field. In this present work, we investigate specifically the range of
validity of Birkhoff's theorem with the general tetrad field via perturbative
approach. At zero order, Birkhoff's theorem is valid and the solution is the
well known Schwarzschild-(A)dS metric. Then considering the special case of the
diagonal tetrad field, we present a new spherically symmetric solution in the
frame of f(T) gravity up to the perturbative order. The results with the
diagonal tetrad field satisfy the physical equivalence between the Jordan and
the so-called Einstein frames, which are realized via conformal transformation,
at least up to the first perturbative order.Comment: 8 pages, no figure. Final version, accepted for publication in EPJ
Influence of uniaxial tensile stress on the mechanical and piezoelectric properties of short-period ferroelectric superlattice
Tetragonal ferroelectric/ferroelectric BaTiO3/PbTiO3 superlattice under
uniaxial tensile stress along the c axis is investigated from first principles.
We show that the calculated ideal tensile strength is 6.85 GPa and that the
superlattice under the loading of uniaxial tensile stress becomes soft along
the nonpolar axes. We also find that the appropriately applied uniaxial tensile
stress can significantly enhance the piezoelectricity for the superlattice,
with piezoelectric coefficient d33 increasing from the ground state value by a
factor of about 8, reaching 678.42 pC/N. The underlying mechanism for the
enhancement of piezoelectricity is discussed
- …
