63 research outputs found

    A novel method of experimental determination of grain stresses and critical resolved shear stresses for slip and twin systems in a magnesium alloy

    Get PDF
    A novel original method of determination of stresses and critical resolved shear stresses (CRSSs) using neutron diffraction was proposed. In this method, based on the crystallite group method, the lattice strains were measured in different directions and using different reflections hkl during uniaxial deformation of magnesium alloy AZ31. The advantage of this method is that the stresses for groups of grains having similar orientations can be determined directly from measurement without any models used for data interpretation. The obtained results are unambiguous and do not depend on the models assumptions as in previous works. Moreover, it was possible for the first time to determine the uncertainty of the measured CRSS values and local stresses at groups of grains. The used methodology allowed for the determination of stress partitioning between grains having different orientations and for an explanation of the anisotropic mechanical behaviour of the strongly textured alloy. Finally, the CRSS values allowed for the validation of the type of intergranular interaction assumed in the elastic–plastic self-consistent model and for a significant reduction of the number of unknown parameters when the model is adjusted to the experimental data

    A novel method of experimental determination of grain stresses and critical resolved shear stresses for slip and twin systems in a magnesium alloy

    Full text link
    A novel original method of determination of stresses and critical resolved shear stresses (CRSSs) using neutron diffraction was proposed. In this method, based on the crystallite group method, the lattice strains were measured in different directions and using different reflections hkl during uniaxial deformation of magnesium alloy AZ31. The advantage of this method is that the stresses for groups of grains having similar orientations can be determined directly from measurement without any models used for data interpretation. The obtained results are unambiguous and do not depend on the models assumptions as in previous works. Moreover, it was possible for the first time to determine the uncertainty of the measured CRSS values and local stresses at groups of grains. The used methodology allowed for the determination of stress partitioning between grains having different orientations and for an explanation of the anisotropic mechanical behaviour of the strongly textured alloy. Finally, the CRSS values allowed for the validation of the type of intergranular interaction assumed in the elastic-plastic self-consistent model and for a significant reduction of the number of unknown parameters when the model is adjusted to the experimental data.Comment: 61 pages, 31 figures, 6 pages in Appendix, Accepted in Measuremen

    The hardening in alloys and composites and its examination with a diffraction and self-consistent model

    Get PDF
    The paper presents the results of diffraction stress measurement in Al/SiC composite and in 2124T6 aluminum alloy during the in situ tensile test. The main aim of the work is to observe the stress values for different stages of tensile test for the composite after applying two types of thermal treatment and for the alloy used as a matrix in this composite, to identify the type of hardening process. The experimental results were compared against the calculations results obtained from the self-consistent model developed by Baczmański [1] - [3] to gain the information about the micromechanical properties (critical resolved shear stress τcr_{cr} and hardening parameter H) of the examined materials. This comparison allowed researchers to determine the role of reinforcement in the composite as well as the impact of the heat treatment on the hardening of the material

    A micro-CT study of the sinus tympani variation in humans

    Get PDF
    The posterior part of the tympanic cavity comprises a depression called the sinus tympani (ST). The said structure is of outmost importance, e.g., in surgical procedures involving the middle ear, as a pathology (microbial biofilm or cholesteatoma) present in this difficult to access location might hinder its effective treatment. The aim of the study was to evaluate anatomical variants of the sinus tympani in human adult petrous bones. For this purpose, 3D models of the ST were recreated from micro-CT scans of 44 dry petrous bone samples (19 female, 25 male), applying 3D Slicer, Meshmixer and MeshLab softwares. Anatomical variants of the ST were classified in terms of both shape and surface configuration. The internal configuration of the ST was classified as heterogeneous - containing small bony trabeculae and crests up to 1.0 mm in size, contrasting to homogeneous ST that characterizes a relatively smooth interior, or mere presence of minor depressions and mild folds. Female STs were more bowl-shaped (57.9%) than saccular (42.1%), and had heterogeneous surface configuration (52.6%) compared to homogeneous (47.4%). On the contrary, male STs were more saccular (52.0%) rather than bowl-shaped (48.0%), and predominantly had a heterogeneous surface (84.0%) over homogeneous (16.0%). A complex combination of ST features comprised of a saccular shape and heterogeneous surface occurred in 52.0% of males and in 15.8% of females (a statistically significant difference; p = 0.0254, Fisher’s exact test) seems to be clinically important because of its potential negative implication on health outcomes after surgery in case of e.g., cholesteatoma, and it may also favor chronic pathological processes

    The stubborn non-probabilist : "negation incoherence" and a new way to block the Dutch Book argument

    Get PDF
    We rigorously specify the class of nonprobabilistic agents which are, we argue, immune to the classical Dutch Book argument. We also discuss the notion of expected value used in the argument as well as sketch future research connecting our results to those concerning incoherence measures

    Investigation on the Behavior of Austenite and Ferrite Phases at Stagnation Region in the Turning of Duplex Stainless Steel Alloys

    Get PDF
    This paper investigates the deformation mechanisms and plastic behavior of austenite and ferrite phases in duplex stainless steel alloys 2205 and 2507 under chip formation from a machine turning operation. SEM images and EBSD phase mapping of frozen chip root samples detected a build-up of ferrite bands in the stagnation region, and between 65 and 85 pct, more ferrite was identified in the stagnation region compared to austenite. SEM images detected micro-cracks developing in the ferrite phase, indicating ferritic build-up in the stagnation region as a potential triggering mechanism to the formation of built-up edge, as transgranular micro-cracks found in the stagnation region are similar to micro-cracks initiating built-up edge formation. Higher plasticity of austenite due to softening under high strain is seen responsible for the ferrite build-up. Flow lines indicate that austenite is plastically deforming at a greater rate into the chip, while ferrite shows to partition most of the strain during deformation. The loss of annealing twins and activation of multiple slip planes triggered at high strain may explain the highly plastic behavior shown by austenite
    corecore