50 research outputs found

    Prompt gamma imaging in proton therapy : status, challenges and developments

    Get PDF
    This paper is an overview of the field of proton therapy monitoring in real time using prompt gamma radiation. Different approaches providing either integrated or differential information are described, and their maturity, limitations and clinical usefulness are discussed. In the second part, the SiFi-CC project is briefly introduced, which aims at the development of a Compton camera for prompt gamma imaging, entirely based on fibres made of a heavy, inorganic scintillator read out by silicon photomultipliers. This compact solution offers very good timing properties, high granularity and a modern data acquisition system, addressing previously identified issues

    Characterisation of components of a scintillation-fiber-based compton camera

    Get PDF
    The next awaited breakthrough in proton therapy is the inclusion of the tools for online monitoring of beam range into clinical practice. Full, three-dimensional information on the deposited dose distribution can be obtained by means of prompt gamma imaging using Compton cameras. Large gamma detection efficiency and high-rate capacity can be achieved using detectors of high granularity made of a heavy scintillator. One of the possible design options is a stack of scintillating fibers. As the overall performance of such a camera depends on the position, time and energy resolution of the fibers, we investigate those properties both experimentally in measurements with a test bench as well as via Monte Carlo simulations. The obtained results point at LYSO:Ce as the best candidate for a sensitive material of a Compton camera of the discussed type

    Comparison of various models of Monte Carlo geant 4 code in simulations of prompt gamma production

    Get PDF
    In this paper, results of simulations of the gamma-ray production in reactions with 70 MeV protons in a target of PMMA are presented. The data obtained by means of two versions of Geant 4 software, 9.3 and 10.01, have shown significant differences in the gamma-ray spectra. The comparison between the calculated spectra and the measured ones has been carried out. The tested versions do not give satisfactory agreement with the experimental result. The reason of the performed verification was the planned application of this simulation toolkit for the preparation of in vivo dosimetry based on the prompt gamma-ray measurements for the proton therapy

    Experimental investigation of the few-nucleon dynamics in deuteron-deuteron collision at 160 MeV

    Get PDF
    An experiment, with unpolarized deuteron beam of 160 MeV impinging on liquid deuterium target, was carried out using BINA detector at KVI, in Groningen, the Netherlands. Data were collected for the purpose of obtaining high precision differential cross-section for the deuteron break-up reaction. The elastic scattering data were also collected alongside for the purpose of cross-section normalization. We present here a sample of the un-normalised cross-section for the three-body final state (dddpn)\left ( dd\rightarrow dpn \right ) reaction

    Three- and four-nucleon dynamics at intermediate energies

    Get PDF
    An experiment, with unpolarized deuteron beam of 160 MeV impinging on liquid hydrogen and liquid deuterium targets, was carried out using BINA detector at KVI in Groningen, the Netherlands. Data were collected for the purpose of obtaining high precision differential cross sections of break-up channels in dp and dd collisions. The elastic scattering data were also collected alongside for the purpose of cross-section normalization. A brief description of the experiment and the data analysis as well as some preliminary results are presented

    Near-field coded-mask technique and its potential for proton therapy monitoring

    Get PDF
    Objective. Prompt-gamma imaging encompasses several approaches to the online monitoring of the beam range or deposited dose distribution in proton therapy. We test one of the imaging techniques - a coded mask approach - both experimentally and via simulations. Approach. Two imaging setups have been investigated experimentally. Each of them comprised a structured tungsten collimator in the form of a modified uniformly redundant array mask and a LYSO:Ce scintillation detector of fine granularity. The setups differed in detector dimensions and operation mode (1D or 2D imaging). A series of measurements with radioactive sources have been conducted, testing the performance of the setups for near-field gamma imaging. Additionally, Monte Carlo simulations of a larger setup of the same type were conducted, investigating its performance with a realistic gamma source distribution occurring during proton therapy. Main results. The images of point-like sources reconstructed from two small-scale prototypes' data using the maximum-likelihood expectation maximisation algorithm constitute the experimental proof of principle for the near-field coded-mask imaging modality, both in the 1D and the 2D mode. Their precision allowed us to calibrate out certain systematic offsets appearing due to the limited alignment accuracy of setup elements. The simulation of the full-scale setup yielded a mean distal falloff retrieval precision of 0.72 mm in the studies for beam energy range 89.5–107.9 MeV and with 1 × 108^{8} protons (a typical number for distal spots). The implemented algorithm of image reconstruction is relatively fast—a typical procedure needs several seconds. Significance. Coded-mask imaging appears a valid option for proton therapy monitoring. The results of simulations let us conclude that the proposed full-scale setup is competitive with the knife-edge-shaped and the multi-parallel slit cameras investigated by other groups

    Experimental investigation of few-nucleon dynamics at medium energies

    Get PDF
    An experiment, with unpolarized deuteron beam of 160 MeV impinging on liquid hydrogen and liquid deuterium targets, was carried out using BINA detector at KVI, in Groningen, the Netherlands. Data were collected for the purpose of obtaining high precision differential cross-section for the deuteron break-up reaction. The elastic scattering data were also collected alongside. We present here the methods applied in analysis of data collected in the backward part of the detector
    corecore