995 research outputs found

    Conversion of laser energy to chemical energy by the photoassisted electrolysis of water

    Get PDF
    Ultraviolet irradiation of the n-type semiconductor TiO2 crystal electrode of an aqueous electrochemical cell evolves O2 at the TiO2 electrode and H2 at the Pt electrode. The gases are typically evolved in a 2:1 (H2:O2) volume ratio. The photoassisted reaction seems to require applied voltages, but values as low as 0.25 V do allow the photoassisted electrolysis to proceed. Prolonged irradiation in either acid or base evolves the gaseous products in amounts which clearly demonstrate that the reaction is catalytic with respect to the TiO2. The wavelength response of the TiO2 and the correlation of product yield and current are reported. The results support the claim that TiO2 is a true photoassistance agent for the electrolysis of water. Minimum optical storage efficiencies of the order of 1 percent can be achieved by the production of H2

    Kinetic Theory for Electron Dynamics Near a Positive Ion

    Full text link
    A theoretical description of time correlation functions for electron properties in the presence of a positive ion of charge number Z is given. The simplest case of an electron gas distorted by a single ion is considered. A semi-classical representation with a regularized electron - ion potential is used to obtain a linear kinetic theory that is asymptotically exact at short times. This Markovian approximation includes all initial (equilibrium) electron - electron and electron - ion correlations through renormalized pair potentials. The kinetic theory is solved in terms of single particle trajectories of the electron - ion potential and a dielectric function for the inhomogeneous electron gas. The results are illustrated by a calculation of the autocorrelation function for the electron field at the ion. The dependence on charge number Z is shown to be dominated by the bound states of the effective electron - ion potential. On this basis, a very simple practical representation of the trajectories is proposed and shown to be accurate over a wide range including strong electron - ion coupling. This simple representation is then used for a brief analysis of the dielectric function for the inhomogeneous electron gas.Comment: 30 pages, 5 figures, submitted to Journal of Statistical Mechanics: Theory and Experimen

    Linear Response for Confined Particles

    Full text link
    The dynamics of fluctuations is considered for electrons near a positive ion or for charges in a confining trap. The stationary nonuniform equilibrium densities are discussed and contrasted. The linear response function for small perturbations of this nonuniform state is calculated from a linear Markov kinetic theory whose generator for the dynamics is exact in the short time limit. The kinetic equation is solved in terms of an effective mean field single particle dynamics determined by the local density and dynamical screening by a dielectric function for the non-uniform system. The autocorrelation function for the total force on the charges is discussed.Comment: 4 pages, 1 figure. Results presented at the "International Conference on Strongly Coupled Coulomb Systems", Camerino, Italy, July 2008. Submitted for publication in the conference proceedings (special issue of Journal of Physics A

    Theoretical Description of Coulomb Balls - Fluid Phase

    Full text link
    A theoretical description for the radial density profile of a finite number of identical charged particles confined in a harmonic trap is developed for application over a wide range of Coulomb coupling (or, equivalently, temperatures) and particle numbers. A simple mean field approximation neglecting correlations yields a density profile which is monotonically decreasing with radius for all temperatures, in contrast to molecular dynamics simulations and experiments showing shell structure at lower temperatures. A more complete theoretical description including charge correlations is developed here by an extension of the hypernetted chain approximation, developed for bulk fluids, to the confined charges. The results reproduce all of the qualitative features observed in molecular dynamics simulations and experiments. These predictions are then tested quantitatively by comparison with new benchmark Monte Carlo simulations. Quantitative accuracy of the theory is obtained for the selected conditions by correcting the hypernetted chain approximation with a representation for the associated bridge functions.Comment: 10 figures, submitted to Physical Review

    SAT-based optimal hypergraph partitioning with replication

    Get PDF
    We propose a methodology for optimal k-way partitioning with replication of directed hypergraphs via Boolean satisfiability. We begin by leveraging the power of existing and emerging SAT solvers to attack traditional logic bipartitioning and show good scaling behavior. We continue to present the first optimal partitioning results that admit generation and assignment of replicated nodes concurrently. Our framework is general enough that we also give the first published optimal results for partitioning with respect to the maximum subdomain degree metric and the sum of external degrees metric. We show that for the bipartitioning case we can feasibly solve problems of up to 150 nodes with simultaneous replication in hundreds of seconds. For other partitioning metrics, we are able to solve problems up to 40 nodes in hundreds of seconds

    SAT-based optimal hypergraph partitioning with replication

    Get PDF
    We propose a methodology for optimal k-way partitioning with replication of directed hypergraphs via Boolean satisfiability. We begin by leveraging the power of existing and emerging SAT solvers to attack traditional logic bipartitioning and show good scaling behavior. We continue to present the first optimal partitioning results that admit generation and assignment of replicated nodes concurrently. Our framework is general enough that we also give the first published optimal results for partitioning with respect to the maximum subdomain degree metric and the sum of external degrees metric. We show that for the bipartitioning case we can feasibly solve problems of up to 150 nodes with simultaneous replication in hundreds of seconds. For other partitioning metrics, we are able to solve problems up to 40 nodes in hundreds of seconds

    Host-linked soil viral ecology along a permafrost thaw gradient

    Get PDF
    Climate change threatens to release abundant carbon that is sequestered at high latitudes, but the constraints on microbial metabolisms that mediate the release of methane and carbon dioxide are poorly understood1,2,3,4,5,6,7. The role of viruses, which are known to affect microbial dynamics, metabolism and biogeochemistry in the oceans8,9,10, remains largely unexplored in soil. Here, we aimed to investigate how viruses influence microbial ecology and carbon metabolism in peatland soils along a permafrost thaw gradient in Sweden. We recovered 1,907 viral populations (genomes and large genome fragments) from 197 bulk soil and size-fractionated metagenomes, 58% of which were detected in metatranscriptomes and presumed to be active. In silico predictions linked 35% of the viruses to microbial host populations, highlighting likely viral predators of key carbon-cycling microorganisms, including methanogens and methanotrophs. Lineage-specific virus/host ratios varied, suggesting that viral infection dynamics may differentially impact microbial responses to a changing climate. Virus-encoded glycoside hydrolases, including an endomannanase with confirmed functional activity, indicated that viruses influence complex carbon degradation and that viral abundances were significant predictors of methane dynamics. These findings suggest that viruses may impact ecosystem function in climate-critical, terrestrial habitats and identify multiple potential viral contributions to soil carbon cycling

    Dearest Spot of Earth to Me Is Home

    Get PDF
    1. The dearest spot of earth to me Is Home ... sweet Home! The fairyland I long to see Is Home! ... sweet Home! There, how charm\u27d the sense of hearing! There, where love is so endearing! All the world is not so cheering As Home ... sweet Home The dearest spot of earth to me Is Home ... sweet Home The fairyland I long to see is Home sweet Home. 2. I\u27ve taught my heart the way to prize My Home ...sweet Home I\u27ve learn\u27d to look with lover\u27s eyes On Home ... sweet Home! There where vows are truly plighted, There, where hearts are so united, All the world besides I\u27ve slighted For Home ... sweet Home! The dearest spot of earth to me Is Home ... sweet Home. The fairyland I long to see is Home sweet Home
    corecore