research

Theoretical Description of Coulomb Balls - Fluid Phase

Abstract

A theoretical description for the radial density profile of a finite number of identical charged particles confined in a harmonic trap is developed for application over a wide range of Coulomb coupling (or, equivalently, temperatures) and particle numbers. A simple mean field approximation neglecting correlations yields a density profile which is monotonically decreasing with radius for all temperatures, in contrast to molecular dynamics simulations and experiments showing shell structure at lower temperatures. A more complete theoretical description including charge correlations is developed here by an extension of the hypernetted chain approximation, developed for bulk fluids, to the confined charges. The results reproduce all of the qualitative features observed in molecular dynamics simulations and experiments. These predictions are then tested quantitatively by comparison with new benchmark Monte Carlo simulations. Quantitative accuracy of the theory is obtained for the selected conditions by correcting the hypernetted chain approximation with a representation for the associated bridge functions.Comment: 10 figures, submitted to Physical Review

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019