2,390 research outputs found
Galactic Plane H Surveys: IPHAS & VPHAS+
The optical Galactic Plane H surveys IPHAS and VPHAS+ are
dramatically improving our understanding of Galactic stellar populations and
stellar evolution by providing large samples of stars in short lived, but
important, evolutionary phases, and high quality homogeneous photometry and
images over the entire Galactic Plane. Here I summarise some of the
contributions these surveys have already made to our understanding of a number
of key areas of stellar and Galactic astronomy.Comment: 5 pages, 2 figures, refereed proceeding of the "The Universe of
Digital Sky Surveys" conference, November 2014, to be published in the
Astrophysics and Space Science Proceeding
Progression from Chinese high school onto a transnational Chinese-UK university joint BSc degree in chemistry; an international study focussing on laboratory practical skills
An investigation was carried out into laboratory practical skills development and students’ specific challenges in transition from laboratory chemistry at Chinese High School (HS) to a fully English style university laboratory course. To the best of our knowledge this is the first study of its type investigating practical laboratory skills for a TransNational Education (TNE) Chemistry BSc (3 + 1) degree programme between the United Kingdom (UK) and the People's Republic of China (PRC). Internationalization of such courses have become popular in recent years. The two universities in this study are Nanjing Tech University (NJTech) and the University of Sheffield (UoS). Our study is exploratory with the aim to determine the level of practical laboratory skills the NJTech students gained from High School and the challenges they encountered as they joined a UK degree laboratory programme delivered in English. For this international study, a mixed-methods approach was followed using qualitative inductive and deductive methodologies. Using open-ended questions it was found that particular challenges in the transition were around the lack of prior laboratory experience and the development of many new skills, laboratory notebook documentation, laboratory safety, and studying laboratory chemistry in a second language. Students welcomed these challenges and felt they were developing into professional chemists. Specific recommendations are made for international TNE degrees with laboratory programmes, particularly for those students who progress from Chinese High School through the Chinese GaoKao system into a western university chemistry laboratory programme. The scaffolded/structured curriculum design allowed for total and successful integration of the NJTech with the Sheffield home students during the final year of their BSc in Chemistry. After graduation, having gained high class degrees and becoming fluent in English many of the students progressed into Industry, and onto Masters or PhD programmes in the UK and throughout the world, suggesting internationalisation of students on our TNE programme was successful
Candidates for a possible third-generation gravitational wave detector: comparison of ring-Sagnac and sloshing-Sagnac speedmeter interferometers
Speedmeters are known to be quantum non-demolition devices and, by potentially providing sensitivity beyond the standard quantum limit, become interesting for third generation gravitational wave detectors. Here we introduce a new configuration, the sloshing-Sagnac interferometer, and compare it to the more established ring-Sagnac interferometer. The sloshing-Sagnac interferometer is designed to provide improved quantum noise limited sensitivity and lower coating thermal noise than standard position meter interferometers employed in current gravitational wave detectors. We compare the quantum noise limited sensitivity of the ring-Sagnac and the sloshing-Sagnac interferometers, in the frequency range, from 5 Hz to 100 Hz, where they provide the greatest potential benefit. We evaluate the improvement in terms of the unweighted noise reduction below the standard quantum limit, and by finding the range up to which binary black hole inspirals may be observed. The sloshing-Sagnac was found to give approximately similar or better sensitivity than the ring-Sagnac in all cases. We also show that by eliminating the requirement for maximally-reflecting cavity end mirrors with correspondingly-thick multi-layer coatings, coating noise can be reduced by a factor of approximately 2.2 compared to conventional interferometers
A Design Comparison of Atmospheric Flight Vehicles for the Exploration of Titan
Titan, the largest moon of Saturn, is one of the most scientifically interesting locations in the Solar System. With a very cold atmosphere that is five times as dense as Earth s, and one and a half times the surface pressure, it also provides one of the most aeronautically fascinating environments known to humankind. While this may seem the ideal place to attempt atmospheric flight, many challenges await any vehicle attempting to navigate through it. In addition to these physical challenges, any scientific exploration mission to Titan will most likely have several operational constraints. One difficult constraint is the desire for a global survey of the planet and thus, a long duration flight within the atmosphere. Since many of the scientific measurements that would be unique to a vehicle flying through the atmosphere (as opposed to an orbiting spacecraft) desire near-surface positioning of their associated instruments, the vehicle must also be able to fly within the first scale height of the atmosphere. Another difficult constraint is that interaction with the surface, whether by landing or dropped probe, is also highly desirable from a scientific perspective. Two common atmospheric flight platforms that might be used for this mission are the airplane and airship. Under the assumption of a mission architecture that would involve an orbiting relay spacecraft delivered via aerocapture and an atmospheric flight vehicle delivered via direct entry, designs were developed for both platforms that are unique to Titan. Consequently, after a viable design was achieved for each platform, their advantages and disadvantages were compared. This comparison included such factors as deployment risk, surface interaction capability, mass, and design heritage. When considering all factors, the preferred candidate platform for a global survey of Titan is an airship
Tracking and assessing practical chemistry skills development: practical skills portfolios
We present the evaluation of the student response to a novel form of practical assessment; the Practical Skills Portfolio (PSP). The PSP is a concise record of a practical activity for the purposes of assessment, which prompts students to engage in reflective practice on laboratory skills, and provides opportunities for enhanced feedback delivered in a timely manner. Key goals of this new approach are to assist students in assimilating the practical skills they are developing during their studies and to support them in developing their ability to write the different components of a full lab report
PDT in the Thoracic Cavity: Spectroscopic Methods and Fluence Modeling for Treatment Planning
PDT for the thoracic cavity provides a promising cancer treatment modality, but improvements in treatment planning, particularly in PDT dosimetry, can be made to improve uniformity of light delivery. When a cavity of arbitrary geometry is illuminated, the fluence increases due to multiple-scattered photons, referred to as the Integrating Sphere Effect (ISE). Current pleural PDT treatment protocol at the University of Pennsylvania monitors light fluence (hereafter simply fluence, measured in W/cm2) via seven isotropic detectors sutured at different locations in thoracic cavity of a patient. This protocol monitors light at discrete locations, but does not provide a measurement of fluence for the thoracic cavity as a whole. Current calculation of light fluence includes direct light only and thus does not account for the unique optical properties of each tissue type present, which in turn affects the accuracy of the calculated light distribution in the surrounding tissue and, in turn, the overall cell death and treatment efficacy.
Treatment planning for pleural PDT can be improved, in part, by considering the contribution of scattered light, which is affected by the two factors of geometry and in vivo optical properties. We expanded the work by Willem Star in regards to the ISE in a spherical cavity. A series of Monte Carlo (MC) simulations were run for semi-infinite planar, spherical, and ellipsoidal geometries for a range of optical properties. The results of these simulations are compared to theory and numerical solutions for fluence in the cavity and at the cavity-medium boundary. The development via MC simulations offers a general method of calculating the required light fluence specialized to each patient, based on the treatment surface area.
The scattered fluence calculation is dependent on in vivo optical properties (ÎĽa and ÎĽs\u27) of the tissues treated. Diffuse reflectance and fluorescence spectroscopy methods are used to determine the optical properties and oxygenation (reflectance measurements) and drug concentration (fluorescence measurements) of different tissues in vivo, before and after treatment, in patients enrolled the Phase I HPPH study ongoing at the University of Pennsylvania.
This work aims to provide the building blocks essential to pleural PDT treatment planning by more accurately calculating the required fluence using a model that accounts for the effects of treatment geometry and optical properties measured in vivo
Cocrystals of spironolactone and griseofulvin based on an in silico screening method
Cocrystal formation is considered as one of the most effective solid-state methods to alter the physicochemical properties of active pharmaceutical ingredients (APIs). In silico methods for cocrystal prediction are mostly based on structural and energetic considerations. We have developed a computational method that ranks the probability of cocrystal formation of APIs with large databases of crystal coformers (CCFs). This approach is based on using molecular electrostatic potential surfaces to assess molecular complementarity between two cocrystal components. The screening tool was applied to two low solubility drugs, namely griseofulvin and spironolactone. Promising coformer candidates were selected from a database of 310 pharmaceutically acceptable CCFs, and experimental screening was carried out. Novel solid forms were obtained by liquid-assisted grinding and were characterised by XRPD, DSC, TGA and IR. One new cocrystal of griseofulvin and two new cocrystals of spironolactone were identified, and the crystal structures were determined from the XRPD patterns. For these systems, phenols tend to act as successful H-bond donors in forming cocrystals, while carboxylic acids only give rise to physical mixtures of the two components
Red Queen Coevolution on Fitness Landscapes
Species do not merely evolve, they also coevolve with other organisms.
Coevolution is a major force driving interacting species to continuously evolve
ex- ploring their fitness landscapes. Coevolution involves the coupling of
species fit- ness landscapes, linking species genetic changes with their
inter-specific ecological interactions. Here we first introduce the Red Queen
hypothesis of evolution com- menting on some theoretical aspects and empirical
evidences. As an introduction to the fitness landscape concept, we review key
issues on evolution on simple and rugged fitness landscapes. Then we present
key modeling examples of coevolution on different fitness landscapes at
different scales, from RNA viruses to complex ecosystems and macroevolution.Comment: 40 pages, 12 figures. To appear in "Recent Advances in the Theory and
Application of Fitness Landscapes" (H. Richter and A. Engelbrecht, eds.).
Springer Series in Emergence, Complexity, and Computation, 201
Human annoyance, acceptability and concern as responses to vibration from the construction of light rapid transit lines in residential environments
The aim of this paper is to investigate the use of different self-reported measures for assessing the human response to environmental vibration from the construction of an urban LRT (Light Rapid Transit) system. The human response to environmental stressors such as vibration and noise is often expressed in terms of exposure–response relationships that describe annoyance as a function of the magnitude of the vibration. These relationships are often the basis of noise and vibration policy and the setting of limit values. This paper examines measures other than annoyance by expressing exposure–response relationships for vibration in terms of self-reported concern about property damage and acceptability. The exposure–response relationships for concern about property damage and for acceptability are then compared with those for annoyance. It is shown that concern about property damage occurs at vibration levels well below those where there is any risk of damage. Earlier research indicated that concern for damage is an important moderator of the annoyance induced. Acceptability, on the other hand, might be influenced by both annoyance and concern, as well as by other considerations. It is concluded that exposure–response relationships expressing acceptability as a function of vibration exposure could usefully complement existing relationships for annoyance in future policy decisions regarding environmental vibration. The results presented in this paper are derived from data collected through a socio-vibration survey (N = 321) conducted for the construction of an urban LRT in the United Kingdom
- …