852 research outputs found

    Temporal changes in nasopharyngeal carriage of Streptococcus pneumoniaeserotype 1 genotypes in healthy Gambians before and after the 7-valent pneumococcal conjugate vaccine

    Get PDF
    Streptococcus pneumoniae serotype 1 is one of the leading causes of invasive pneumococcal disease. However, this invasive serotype is hardly found in nasopharyngeal asymptomatic carriage and therefore large epidemiological studies are needed to assess the dynamics of serotype 1 infection. Within the context of a large cluster randomized trial conducted in rural Gambia to assess the impact of PCV-7 vaccination on nasopharyngeal carriage, we present an ancillary analysis describing the prevalence of nasopharyngeal carriage of pneumococcal serotype 1 and temporal changes of its more frequent genotypes. Nasopharyngeal swabs (NPS) were collected before PCV-7 vaccination (December 2003–May 2004) and up to 30 months after PCV-7 vaccination. The post-vaccination time was divided in three periods to ensure an equal distribution of the number of samples: (1) July 2006–March 2007, (2) April 2007–March 2008 and (3) April 2008–Feb 2009. S. pneumoniae serotype 1 were genotyped by MLST. Serotype 1 was recovered from 87 (0.71%) of 12,319 NPS samples collected. In the pre-vaccination period, prevalence of serotype 1 was 0.47% in both study arms. In the post-vaccination periods, prevalence in the fully vaccinated villages ranged between 0.08% in period 1 and 0.165% in period 2, while prevalence in partly vaccinated villages was between 0.17% in period 3 and 1.34% in period 2. Overall, four different genotypes were obtained, with ST3081 the most prevalent (60.71%), followed by ST618 (29.76%). ST3081 was found only in post-vaccination period 2 and 3, while ST618 had disappeared in post-vaccination period 3. Distribution of these major genotypes was similar in both study arms. Emergence of ST3081 and concomitant disappearance of ST618 may suggest a change in the molecular epidemiology of pneumococcal serotype 1 in this region. This change is not likely to be associated with the introduction of PCV-7 which lacks serotype 1, as it was observed simultaneously in both study arms. Future population-based epidemiological studies will provide further evidence of substantive changes in the pneumococcal serotype 1 epidemiology and the likely mechanisms

    An Untriggered Search for Optical Bursts

    Full text link
    We present an untriggered search for optical bursts with the ROTSE-I telephoto array. Observations were taken which monitor an effective 256 square degree field continuously over 125 hours to m_{ROTSE}=15.7. The uniquely large field, moderate limiting magnitude and fast cadence of ∼\sim10 minutes permits transient searches in a new region of sensitivity. Our search reveals no candidate events. To quantify this result, we simulate potential optical bursts with peak magnitude, m_{p}, at t=10 s, which fade as f=(\frac{t}{t_{0}}) ^{\alpha_{t}}, where \alpha_t < 0. Simple estimates based on observational evidence indicate that a search of this sensitivity begins to probe the possible region occupied by GRB orphan afterglows. Our observing protocol and image sensitivity result in a broad region of high detection efficiency for light curves to the bright and slowly varying side of a boundary running from [\alpha_{t},m_{p}]=[-2.0,6.0] to [-0.3,13.2]. Within this region, the integrated rate of brief optical bursts is less than 1.1\times 10^{-8} {\rm s}^{-1} {\rm deg}^{-2}. At ∼\sim22 times the observed GRB rate from BATSE, this suggests a limit on \frac{\theta_{opt}}{\theta_{\gamma}}\lesssim 5 where \theta_{opt} and \theta_{\gamma} are the optical and gamma-ray collimation angles, respectively. Several effects might explain the absence of optical bursts, and a search of the kind described here but more sensitive by about 4 magnitudes should offer a more definitive probe.Comment: 8 pages, 6 figures, 1 tabl

    A Search for Early Optical Emission from Short and Long Duration Gamma-ray Bursts

    Full text link
    Gamma-ray bursts of short duration may harbor vital clues to the range of phenomena producing bursts. However, recent progress from the observation of optical counterparts has not benefitted the study of short bursts. We have searched for early optical emission from six gamma-ray bursts using the ROTSE-I telephoto array. Three of these events were of short duration, including GRB 980527 which is among the brightest short bursts yet observed. The data consist of unfiltered CCD optical images taken in response to BATSE triggers delivered via the GCN. For the first time, we have analyzed the entire 16 degree by 16 degree field covered for five of these bursts. In addition, we discuss a search for the optical counterpart to GRB 000201, a well-localized long burst. Single image sensitivities range from 13th to 14th magnitude around 10 s after the initial burst detection, and 14 - 15.8 one hour later. No new optical counterparts were discovered in this analysis suggesting short burst optical and gamma-ray fluxes are uncorrelated.Comment: 8 pages, 2 figures, subm. to ApJ Let

    Prompt Optical Observations of Gamma-ray Bursts

    Get PDF
    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure simultaneous and early afterglow optical emission from gamma-ray bursts (GRBs). A search for optical counterparts to six GRBs with localization errors of 1 square degree or better produced no detections. The earliest limiting sensitivity is m(ROTSE) > 13.1 at 10.85 seconds (5 second exposure) after the gamma-ray rise, and the best limit is m(ROTSE) > 16.0 at 62 minutes (897 second exposure). These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. Consideration of the gamma-ray fluence and peak flux for these bursts and for GRB990123 indicates that there is not a strong positive correlation between optical flux and gamma-ray emission.Comment: 4 pages, 3 figures, submitted to ApJ Letter

    Coherent states on spheres

    Get PDF
    We describe a family of coherent states and an associated resolution of the identity for a quantum particle whose classical configuration space is the d-dimensional sphere S^d. The coherent states are labeled by points in the associated phase space T*(S^d). These coherent states are NOT of Perelomov type but rather are constructed as the eigenvectors of suitably defined annihilation operators. We describe as well the Segal-Bargmann representation for the system, the associated unitary Segal-Bargmann transform, and a natural inversion formula. Although many of these results are in principle special cases of the results of B. Hall and M. Stenzel, we give here a substantially different description based on ideas of T. Thiemann and of K. Kowalski and J. Rembielinski. All of these results can be generalized to a system whose configuration space is an arbitrary compact symmetric space. We focus on the sphere case in order to be able to carry out the calculations in a self-contained and explicit way.Comment: Revised version. Submitted to J. Mathematical Physic

    Coherent states for compact Lie groups and their large-N limits

    Full text link
    The first two parts of this article surveys results related to the heat-kernel coherent states for a compact Lie group K. I begin by reviewing the definition of the coherent states, their resolution of the identity, and the associated Segal-Bargmann transform. I then describe related results including connections to geometric quantization and (1+1)-dimensional Yang--Mills theory, the associated coherent states on spheres, and applications to quantum gravity. The third part of this article summarizes recent work of mine with Driver and Kemp on the large-N limit of the Segal--Bargmann transform for the unitary group U(N). A key result is the identification of the leading-order large-N behavior of the Laplacian on "trace polynomials."Comment: Submitted to the proceeding of the CIRM conference, "Coherent states and their applications: A contemporary panorama.

    Isometry theorem for the Segal-Bargmann transform on noncompact symmetric spaces of the complex type

    Get PDF
    We consider the Segal-Bargmann transform for a noncompact symmetric space of the complex type. We establish isometry and surjectivity theorems for the transform, in a form as parallel as possible to the results in the compact case. The isometry theorem involves integration over a tube of radius R in the complexification, followed by analytic continuation with respect to R. A cancellation of singularities allows the relevant integral to have a nonsingular extension to large R, even though the function being integrated has singularities.Comment: Final version. To appear in Journal of Functional Analysis. Minor revision

    Berezin-Toeplitz quantization on Lie groups

    Get PDF
    Let K be a connected compact semisimple Lie group and Kc its complexification. The generalized Segal-Bargmann space for Kc, is a space of square-integrable holomorphic functions on Kc, with respect to a K-invariant heat kernel measure. This space is connected to the "Schrodinger" Hilbert space L^2(K) by a unitary map, the generalized Segal-Bargmann transform. This paper considers certain natural operators on L^2(K), namely multiplication operators and differential operators, conjugated by the generalized Segal-Bargmann transform. The main results show that the resulting operators on the generalized Segal-Bargmann space can be represented as Toeplitz operators. The symbols of these Toeplitz operators are expressed in terms of a certain subelliptic heat kernel on Kc. I also examine some of the results from an infinite-dimensional point of view based on the work of L. Gross and P. Malliavin.Comment: To appear in Journal of Functional Analysi

    The Early Optical Afterglow of GRB 030418 and Progenitor Mass Loss

    Get PDF
    The ROTSE-IIIa telescope and the SSO 40 inch (1.0 m) telescope, both located at Siding Spring Observatory, imaged the early-time afterglow of GRB 030418. In this report, we present observations of the early afterglow, first detected by the ROTSE-IIIa telescope 211 s after the start of the burst and only 76 s after the end of the gamma-ray activity. We detect optical emission that rises for ∼600 s, slowly varies around R = 17.3 mag for ∼1400 s, and then fades as a power law of index α = -1.36. Additionally, the ROTSE-IIIb telescope, located at McDonald Observatory, imaged the early-time afterglow of GRB 030723. The behavior of this light curve was qualitatively similar to that of GRB 030418, but 2 mag dimmer. These two afterglows are dissimilar to other afterglows such as GRB 990123 and GRB 021211. We investigate whether or not the early afterglow can be attributed to a synchrotron break in a cooling synchrotron spectrum as it passes through the optical band, but we find that this model is unable to accurately describe the early light curve. We present a simple model for gamma-ray burst emission emerging from a wind medium surrounding a massive progenitor star. This model provides an effective description of the data and suggests that the rise of the afterglow can be ascribed to extinction in the local circumburst environment. In this interpretation, these events provide further evidence of the connection between gamma-ray bursts and the collapse of massive stars.This work has been supported by NASA grants NAG5- 5281 and F006794, NSF grants AST 01-19685 and 01-05221, the Australian Research Council, the University of New South Wales, and the University of Michigan. Work performed at LANL is supported by NASA SR&T through Department of Energy (DOE) contract W-7405-ENG-36 and through internal LDRD funding
    • …
    corecore