51 research outputs found

    The High Affinity IgE Receptor FcΔRI Is Expressed by Human Intestinal Epithelial Cells

    Get PDF
    IgE antibodies play a paramount role in the pathogenesis of various intestinal disorders. To gain insights in IgE-mediated pathophysiology of the gut, we investigated the expression of the high affinity IgE receptor Fc epsilonRI in human intestinal epithelium.Fc epsilonRI alpha-chain, as detected by immunohistochemistry, was positive in epithelial cells for eight of eleven (8/11) specimens from colon cancer patients and 5/11 patients with inflammation of the enteric mucosa. The Fc epsilonRIalpha positive epithelial cells co-expressed Fc epsilonRIgamma, whereas with one exception, none of the samples was positive for the beta-chain in the epithelial layer. The functionality of Fc epsilonRI was confirmed in situ by human IgE binding. In experiments with human intestinal tumor cell lines, subconfluent Caco-2/TC7 and HCT-8 cells were found to express the alpha- and gamma-chains of Fc epsilonRI and to bind IgE, whereas confluent cells were negative for gamma-chains.Our data provide the first evidence that the components of a functional Fc epsilonRI are in vitro expressed by the human intestinal epithelial cells depending on differentiation and, more importantly, in situ in epithelia of patients with colon cancer or gastrointestinal inflammations. Thus, a contribution of Fc epsilonRI either to immunosurveillance or pathophysiology of the intestinal epithelium is suggested

    Cell Therapy for Prophylactic Tolerance in Immunoglobulin E-mediated Allergy

    Get PDF
    AbstractBackgroundTherapeutic strategies for the prophylaxis of IgE-mediated allergy remain an unmet medical need. Cell therapy is an emerging approach with high potential for preventing and treating immunological diseases.We aimed to develop a cell-based therapy inducing permanent allergen-specific immunological tolerance for preventing IgE-mediated allergy.MethodsWild-type mice were treated with allergen-expressing bone marrow cells under a short course of tolerogenic immunosuppression (mTOR inhibition and costimulation blockade). Bone marrow was retrieved from a novel transgenic mouse ubiquitously expressing the major grass pollen allergen Phl p 5 as a membrane-anchored protein (BALB/c-Tg[Phlp5-GFP], here mPhl p 5). After transplantation recipients were IgE-sensitized at multiple time points with Phl p 5 and control allergen.ResultsMice treated with mPhl p 5 bone marrow did not develop Phl p 5-specific IgE (or other isotypes) despite repeated administration of the allergen, while mounting and maintaining a strong humoral response towards the control allergen. Notably, Phl p 5-specific T cell responses and allergic airway inflammation were also completely prevented. Interestingly allergen-specific B cell tolerance was maintained independent of Treg functions indicating deletional tolerance as underlying mechanism.ConclusionThis proof-of-concept study demonstrates that allergen-specific immunological tolerance preventing occurrence of allergy can be established through a cell-based therapy employing allergen-expressing leukocytes

    Diagnosing nodular regenerative hyperplasia of the liver is thwarted by low interobserver agreement

    Get PDF
    Background and Aims: Nodular regenerative hyperplasia (NRH) of the liver is associated with several diseases and drugs. Clinical symptoms of NRH may vary from absence of symptoms to full-blown (noncirrhotic) portal hypertension. However, diagnosing NRH is challenging. The objective of this study was to determine inter- and intraobserver agreement on the histopathologic diagnosis of NRH. Methods: Liver specimens (n=48) previously diagnosed as NRH, were reviewed for the presence of NRH by seven pathologists without prior knowledge of the original diagnosis or clinical background. The majority of the liver specimens were from thiopurine using inflammatory bowel disease patients. Histopathologic features contributing to NRH were also assessed. Criteria for NRH were modified by consensus and subsequently validated. Interobserver agreement was evaluated by using the standard kappa index. Results: After review, definite NRH, inconclusive NRH and no NRH were found in 35% (23-40%), 21% (13-27%) and 44% (38-56%), respectively (median, IQR). The median interobserver agreement for NRH was poor (Îș = 0.20, IQR 0.14-0.28). The intraobserver variability on NRH ranged between 14% and 71%. After modification of the criteria and exclusion of biopsies with technical shortcomings, the interobserver agreement on the diagnosis NRH was fair (Îș = 0.45). Conclusions: The interobserver agreement on the histopathologic diagnosis of NRH was poor, even when assessed by well-experienced liver pathologists. Modification of the criteria of NRH based on consensus effort and exclusion of biopsies of poor quality led to a fairly increased interobserver agreement. The main conclusion of this study is that NRH is a clinicopathologic diagnosis that cannot reliably be based on histopathology alone

    Copper and Trace Elements in Gallbladder form Patients with Wilson’s Disease Imaged and Determined by Synchrotron X-ray Fluorescence

    No full text
    Investigations about suspected tissue alterations and the role of gallbladder in Wilson’s disease (WD)—an inherited genetic disease with impaired copper metabolism—are rare. Therefore, tissue from patients with genetically characterised WD was investigated by microscopic synchrotron X-ray fluorescence (µSRXRF). For two-dimensional imaging and quantification of elements, X-ray spectra were peak-fitted, and the net peak intensities were normalised to the intensity of the incoming monochromatic beam intensity. Concentrations were calculated by fundamental parameter-based program quant and external standardisation. Copper (Cu), zinc (Zn) and iron (Fe) along with sulphur (S) and phosphorus (P) mappings could be demonstrated in a near histological resolution. All these elements were increased compared to gallbladder tissue from controls. Cu and Zn and Fe in WD-GB were mostly found to be enhanced in the epithelium. We documented a significant linear relationship with Cu, Zn and sulphur. Concentrations of Cu/Zn were roughly 1:1 while S/Cu was about 100:1, depending on the selected areas for investigation. The significant linear relationship with Cu, Zn and sulphur let us assume that metallothioneins, which are sulphur-rich proteins, are increased too. Our data let us suggest that the WD gallbladder is the first in the gastrointestinal tract to reabsorb metals to prevent oxidative damage caused by metal toxicity

    Journal of Immunology Research / Polyclonal Recipient nTregs Are Superior to Donor or Third-Party Tregs in the Induction of Transplantation Tolerance

    No full text
    Induction of donor-specific tolerance is still considered as the “Holy Grail” in transplantation medicine. The mixed chimerism approach is virtually the only tolerance approach that was successfully translated into the clinical setting. We have previously reported successful induction of chimerism and tolerance using cell therapy with recipient T regulatory cells (Tregs) to avoid cytotoxic recipient treatment. Treg therapy is limited by the availability of cells as large-scale expansion is time-consuming and associated with the risk of contamination with effector cells. Using a costimulation-blockade based bone marrow (BM) transplantation (BMT) model with Treg therapy instead of cytoreductive recipient treatment we aimed to determine the most potent Treg population for clinical translation. Here we show that CD4+CD25+ in vitro activated nTregs are superior to TGF induced iTregs in promoting the induction of chimerism and tolerance. Therapy with nTregs (but not iTregs) led to multilineage chimerism and donor-specific tolerance in mice receiving as few as 0.5 106 cells. Moreover, we show that only recipient Tregs, but not donor or third-party Tregs, had a beneficial effect on BM engraftment at the tested doses. Thus, recipient-type nTregs significantly improve chimerism and tolerance and might be the most potent Treg population for translation into the clinical setting.(VLID)489639

    Detection of EpCAM positive and negative circulating tumor cells in metastatic breast cancer patients

    No full text
    Background. Immunomagnetic EpCAM based methods are used to enrich circulating tumor cells (CTCs) in metastatic breast cancer (mBC) patients. EpCAM negative CTCs may be missed. We addressed the question of the reliability of an EpCAM dependent assay to enrich CTCs. Methods. To elucidate this issue, our study has been designed to assess two different CTC enrichment technologies (i) in EpCAM positive (+) and EpCAM negative cell lines and (ii) in mBC patients in dependency on their respective EpCAM expression. These two technologies encompass one anti-EpCAM immunomagnetic enrichment technology, MACS HEA MicroBeads¼ (MACS), and one EpCAM independent density centrifugation method, OncoQuick¼ plus (OQ+). Furthermore, the coherence between EpCAM expression in the primary tumor tissue of mBC patients and the CTC detection rates in the corresponding patients is analyzed. Results. (i) MACS recovered significantly more EpCAM (+) than EpCAM (−) tumor cells (p < 0.001) in spiked blood samples. With OQ+ no significantly different recovery rates between EpCAM (+) and EpCAM (−) tumor cells (p = 0.796) were detected. (ii) In mBC patients MACS yielded a significantly higher (p = 0.024) detection rate of EpCAM (+) CTCs. No statistically significant difference (p = 0.070) was found concerning the EpCAM status-based detection rate of CTCs by OQ+. (iii) CTC detection rates are independent of the primary tumors’ EpCAM expression. Conclusions. EpCAM (−) CTCs can not be detected by immunomagnetic EpCAM dependent enrichment methods. EpCAM independent enrichment technologies seem to be superior to detect the entire CTC population. Evaluation of CTCs as prognostic marker should compromise EpCAM (+) and (−) subpopulations
    • 

    corecore