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Background: Therapeutic strategies for the prophylaxis of IgE-mediated allergy remain an unmet medical need.
Cell therapy is an emerging approach with high potential for preventing and treating immunological diseases.
We aimed to develop a cell-based therapy inducing permanent allergen-specific immunological tolerance for
preventing IgE-mediated allergy.
Methods: Wild-type mice were treated with allergen-expressing bone marrow cells under a short course of
tolerogenic immunosuppression (mTOR inhibition and costimulation blockade). Bone marrow was retrieved
from a novel transgenic mouse ubiquitously expressing the major grass pollen allergen Phl p 5 as a
membrane-anchored protein (BALB/c-Tg[Phlp5-GFP], here mPhl p 5). After transplantation recipients were
IgE-sensitized at multiple time points with Phl p 5 and control allergen.
Results:Mice treated withmPhl p 5 bonemarrow did not develop Phl p 5-specific IgE (or other isotypes) despite
repeated administration of the allergen,whilemounting andmaintaining a strong humoral response towards the
control allergen. Notably, Phl p 5-specific T cell responses and allergic airway inflammationwere also completely
prevented. Interestingly allergen-specific B cell tolerancewasmaintained independent of Treg functions indicat-
ing deletional tolerance as underlying mechanism.
Conclusion: This proof-of-concept study demonstrates that allergen-specific immunological tolerance preventing
occurrence of allergy can be established through a cell-based therapy employing allergen-expressing leukocytes.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Cell-based therapy may have high potential to prevent or treat im-
munological diseases (Fischbach et al., 2013). T regulatory cells
(Tregs) have received themost interest in recent years. Their use is cur-
rently explored in several clinical pilot trials for the treatment of
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ent assay; OD, optical density;
blood cells; AIT/SIT, allergen-
phy; s.c., subcutaneous; i.n., in-
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autoimmune diseases, organ and bone marrow transplantation (Di
Ianni et al., 2011; Brunstein et al., 2011; Trzonkowski et al., 2009;
Marek-Trzonkowska et al., 2014; Wood et al., 2012). While of high in-
terest, pharmacological efficacy remains to be established for such treat-
ment strategies. Besides, conceptually their direct effects are of limited
duration as most Treg subtypes gradually die off. Whether they can es-
tablish a lasting effect— through triggering a ‘regulatory cascade’, for in-
stance, remains to be seen (Edozie et al., 2014). In IgE-mediated allergy
the transfer of Tregs ameliorated allergic inflammation but the effects
on IgE were less clear in mice (Kearley et al., 2005; Leech et al., 2007;
Xu et al., 2012).

An alternative strategy is the transplantation of hematopoietic stem
cells (Pilat andWekerle, 2010). If stem cell engraftment is achieved, this
approach has the advantage of establishing tolerizing mechanisms of
unlimited duration (Sykes, 2001). Transplantation of allogeneic donor
hematopoietic stem cells has been used in clinical pilot trials of renal
transplantation successfully establishing donor-specific tolerance
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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(Kawai et al., 2008; Leventhal et al., 2012; Scandling et al., 2015). Trans-
plantation of autologous hematopoietic stem cells modified to express
the disease-causing antigen is employed for immunological disorders
caused by defined antigens (Alderuccio et al., 2011). For instance, prom-
ising results have been achieved in a clinical trial of multiple sclerosis
with this approach (Lutterotti et al., 2013).

Allergen-specific immunotherapy (AIT or SIT) is an established vac-
cination strategy in IgE-mediated allergy. The induction of allergen-
specific IgG4 to compete with allergen-specific IgE is among its main
mechanisms (Niederberger et al., 2004; Larche et al., 2006), and also
other mechanisms, such as induction of regulatory cells, including
Tregs and Bregs, were described (Akdis and Akdis, 2015). Beside the
well-established SIT, prophylactic approaches are an important unmet
medical need (Valenta et al., 2012). Several studies performed in chil-
dren found that oral immunotherapywas often effective but not always
safe in peanut allergy (Jones et al., 2014). Interestingly a recently pub-
lished clinical study showed that the prophylactic consumption of pea-
nuts in early childhood led to peanut-specific IgG4 induction and
reduced the prevalence of peanut-specific IgE in children with a high
risk to develop peanut allergy (Du Toit et al., 2015). Although oral toler-
ancemight be effective in severe food allergy additional, widely applica-
ble preventive strategies are needed.

Thereforewe aimed to develop a cell therapy strategy for achieving a
long-lasting prevention of IgE-mediated allergy by inducing robust
allergen-specific tolerance.

2. Materials and Methods

2.1. Mice

Female BALB/c mice of SPF quality were purchased from Charles
River Laboratories and housed in a barrier animal facility. Mice were
used between 6 and 12 weeks of age. All experiments were approved
by the local review board of the Medical University of Vienna and ap-
proved by the Austrian Federal Ministry of Science, Research and Econ-
omy, BMWFW (GZ: BMWF-66.009/0295-1I/3b/2011) and were
performed in accordance with national and international guidelines of
laboratory animal care.

2.2. Sera of Allergic Patients

Sera of Phl p 5-allergic patients were used with the approval of the
local ethics committee 235/05/2013 EK Nr. 565/2007 according to the
Austrian Federal Ministry of Science, Research and Economy.

2.3. Generation of the mPhl p 5 Transgenic Mice

The Phl p 5 cDNAwas fused to a signal peptide and a transmembrane
domain as described (Baranyi et al., 2011). The vector pccall2-IRES-
EGFP was transformed into an E. coli cre strain to excise the
neomyocin-Lac Z cassette (both kindly provided by Prof. Maria Sibilia).
The Phl p 5-fusion gene was cloned via XbaI and BglII into the
recombined pccall2 vector-IRES-EGFP. The clone was confirmed by
double-strand DNA sequencing. Before pronuclear injection the bacteri-
al backbone was removed by restriction with ScaI and SfiI and elution
from agarose gel. Briefly, the linearized construct was microinjected
into a pronucleus of fertilized BALB/c inbred oocytes that were trans-
ferred afterward into the oviduct of pseudopregnant surrogate mothers
according to standard protocols for generating transgenicmice (Rulicke,
2004). Transgene integrations were identified by PCR of tail DNA with
Phl p 5-specific and GFP-specific primers. g Phl p 5 3 fw: 5′-CTGCAG
GTCATCGAGAAGGT-3′, g Phl p 5 3 rev: 5′-TTTCAGTGCGGTCTCAAAGA-
3′, PL EGFP-F fw: 5′-CGCACCATCTTCTTCAAGGACGAC-3′, PL EGFP-R
rev: 5′-AACTCCAGCAGGACCATGTGATCG-3′. Of 6 identified transgenic
founders we chose BALB/c-Tg (Phlp5-GFP) 304Biat expressing GFP
and Phl p 5 at high level in white blood cells determined by flow
cytometry.

2.4. Flow Cytometry

Phl p 5+ cells were stained with Phl p 5 BG-6mIgG1 (Petersen et al.,
1994), incubated with rabbit anti-mouse Ig BIO and stained with PE or
Cy5 streptavidin conjugates (Biolegend). B220-Bio CD25-Bio (clone
7D4) (stained with PE streptavidin conjugates) and CD4-APC Cy7
were obtained from Biolegend. Treg depletion-CD25 downregulation
was assessed by staining with 7D4 Abs (anti CD25). Cells were mea-
sured in a FACS Canto II (BD) or FC 500 (Beckman Coulter) and analyzed
using the FlowJo software (Miltenyi, Germany). Phl p 5+ cells were
gated to CD45.2. Thymocytes are additionally gated to CD4/CD8positive
cells.

2.5. Immunofluorescence

Frozen sections of tail skin, hearts and spleens ofmPhl p 5 transgenic
mice or naïve BALB/c micewere blockedwith 10% serum and incubated
with rabbit anti-Phl p 5 antibodies (Focke-Tejkl et al., 2014) (1:500) and
stained with a goat anti-rabbit Alexa fluor 633 antibody (Invitrogen).
Nuclei were stained with propidiumiodid 1:200 from stock 1 mg/ml
(Sigma, Germany). Specimens were analyzed by a confocal LSM510
Meta microscope (Zeiss, Germany) using the ZEN software.

2.6. Allergen-specific ELISA

Allergen-specific ELISAs were performed as described in Baranyi
et al. (2008). For IgE sera were diluted 1:20, for IgG isotypes 1:500, for
IgM and IgA 1:100. Plates were coated with 5 μg of r Phl p 5 or r Bet v
1 (Biomay, Austria) or with Phl p 5 peptides (5 μg/ml each) (Focke-
Tejkl et al., 2014).

2.7. In Vivo Antibodies

Monoclonal antibodies, anti-CD25 (clone PC61) Ab (0.5 mg/mouse/
dose), anti-IL-2 (clone S4B6) (0.3 mg/mouse/dose), anti CTLA4 (clone
9H10) (0.5 mg/mouse/dose) and anti PD-1 (clone J43) (0.25 mg/
mouse/dose) were purchased from BioXcell (West Lebanon, NH).
Mouse anti-mouse CD20 antibody (clone 5D2, isotype IgG2a) (250 μg
per dose) was generously provided by Genentech (San Francisco, CA,
USA). hCTLA4Ig (abatacept) (1mgpermouse)was generously provided
by Bristol-Myers, Squibb Pharmaceuticals (Princeton, NJ, USA).

2.8. Bone Marrow Transplantation

Bone marrow was isolated as described in Pree and Wekerle
(2007). Aliquots of 15 × 106 BMCs were transplanted into the tail
vein of preconditioned BALB/c recipients. Rapamycin was injected
i.p. 150 mg/kg per dose for each mouse.

2.9. Lymphocyte Proliferation Assay

Spleens were removed under aseptic conditions and homogenized.
Single-cell suspensionswere filtered through a 70 μmnylon cell strainer
to remove remaining tissue. Erythrocytes were removed by adding cold
lysing buffer (Red Blood Cell Lysing Buffer, Sigma-Aldrich). Cells were
diluted to a final concentration of 2 × 106 cells/mL and triplicates of
100 μL/well were sowed in 96-well round-bottom plates. Stimulants
were added at a concentration of 2 μg/well allergen or Con A as control
for proliferation at 0.5 μg/well (Sigma-Aldrich). The plates were incu-
bated at 37 °C, 5% CO2. On day 4, 0.5 μCi H3 thymidine ([methyl-3H],
Amersham) per well was added. Sixteen hours later, cells were harvest-
ed and thymidine uptakemeasured in a beta counter (Beta scintillation
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liquid, Wallac). The ability of splenocytes to proliferate was confirmed
by unspecific stimulation with Con A.

2.10. Airway Hyperresponsiveness and Histology

Micewere treatedwith r Phl p5 (10 μg per dose in 50 μl PBS) (Biomay,
Austria) intranasally on day-3, -2 and -1 before whole body plethysmog-
raphy (Buxco Research Systems, Wilmington, NC, USA). Mice were chal-
lenged with different concentrations of methacholine (8, 16, 32 and
64 mg/ml) (Sigma) and PBS as baseline. After methacholine provocation
micewere killed and lungswere stored in 4.5% phosphate buffered form-
aldehyde. Lung sections were stained for hematoxylin and eosin (H&E)
and periodic acid stain (PAS).

2.11. Statistical Analyses

The reported p-values are results of two-sided Mann–Whitney U
tests and were calculated using Graph Pad Prism 5 and compared be-
tween groups. p-Values b 0.05 were considered statistically significant.
Whiskers in box plots indicate the minimum to maximum range of
the values and error-bars indicate the standard deviation (SD).

3. Results

3.1. Membrane-anchored Phl p 5 Is Ubiquitously Expressed in Cells and
Tissues of a Newly Generated mPhl p 5-transgenic Mouse

Phl p 5, amajor pollen allergen of timothy grass, was selected for our
studies as it is highly allergenic (Westritschnig et al., 2008) and as it is
relevant for more than 80% of grass pollen allergic patients from tem-
perate regions (Gangl et al., 2013). To develop cell-based strategies for
tolerance induction with autologous cells (i.e. syngeneic in animal
models) we first generated a transgenic BALB/c mouse — a high IgE re-
sponder strain - expressing Phl p 5 on the cell surface (Dearman and
Kimber, 2009). For ubiquitous expression of Phl p 5 a fusion gene of sig-
nal peptide (S) cDNA of Phl p 5 and transmembrane domain (TM) was
cloned into vector pcall2-IRES eGFP, containing the chicken-β-actin
promoter and CMV-enhancer (CAGGS-promoter) for ubiquitous high
level expression and the reporter protein GFP as an IRES (internal ribo-
somal entry site) (Fig. 1A) (Baranyi et al., 2011; Novak et al., 2000;
Rulicke and Hubscher, 2000; Ittner and Gotz, 2007). Virtually all WBC,
bone marrow (BM), splenocytes and thymocytes expressed Phl p 5
and GFP as assessed by FCM (Fig. 1B). Additionally sections of cardiac,
tail skin and splenic tissue showed widespread expression of mPhl p 5
(Fig. 1C). Specific expression of the transgene was further confirmed
by immunoblot in splenocytes of mPhl p 5 transgenic mice (Fig. E1).
These data demonstrate that mPhl p 5-transgenic mice express mPhl
p 5 and GFP ubiquitously and at high level.

In most models of allergy mice are immunized in combination with
alum as an adjuvant, known to activate the inflammasome and a type 2
innate response (Eisenbarth and Colegio, 2008; McKee et al., 2009). To
develop a clinicallymore relevantmodel for allergen recognitionwe de-
termined the immunogenicity of themPhl p 5 transgene product by im-
munizing naïve BALB/c with splenocytes of mPhl p 5 transgenic mice
(n=5). Interestingly, using cell transfer high and constant recombinant
Phl p 5 (r Phl p 5)-specific IgE levels were obtained (w 6 andw 23) dur-
ing the whole follow up (Fig. E2B) as were Phl p 5-specific IgG1, IgG2a,
IgG3 and IgM (data not shown). In comparison, IgE epitope mapping
using sera of grass pollen allergic patients (n = 5) revealed that IgE re-
sponses of allergic patients are directed to the intact Phl p 5 allergen
molecule, with no detectable IgE reactivity to any of seven linear (se-
quential) peptides (P1–P7) (Focke-Tejkl et al., 2014) (Fig. E2A). In
mice immunized subcutaneously with r Phl p 5 adsorbed to Al(OH)3,
IgE reactivity was again directed to the intact allergen but also towards
some linear peptides (mainly P1, P4 and P6) of Phl p 5 (Fig. E2C). In con-
trast, in mice immunized with splenocytes of the mPhl p 5 transgenic
mouse (mPhl p 5) no IgE-reactivity was detectable towards linear pep-
tides but to the whole r Phl p 5 protein (Fig. E2C). Thus, the adjuvant-
free immunization with mPhl p 5 splenocytes more closely reflects the
IgE recognition of Phl p 5 of allergic patients than immunization with
alum-adsorbed rPhl p 5. Thus, the Phl p 5-expressing transgenic BALB/
c mouse may provide a suitable model for developing and investigating
cell-based tolerance strategies.

3.2. Transplantation of mPhl p 5 Bone Marrow Cells With Short Course
Rapamycin and CD40L or CTLA4Ig Leads to Permanent Tolerance

We injected mPhl p 5 BMCs (15 × 106) together with a short course
of tolerogenic immunosuppression (themTOR inhibitor rapamycin plus
either anti-CD40L or CTLA4-Ig) into naïve BALB/c mice. Mice were sub-
sequently immunized three times (w 4, 7, 10) with mPhl p 5-
splenocytes and rBet v 1. Phl p 5-specific IgE remained undetectable
for the duration of follow-up (20 weeks) (Fig. 2A), whereas high levels
of Bet v 1-specific IgE developed quickly and persisted throughout
follow-up (Fig. 2B). As CTLA4Ig and anti-CD40L were comparably effec-
tive in inducing tolerance, CTLA4Ig was selected for further develop-
ment since it is clinically approved (termed hereafter ‘CTLA4Ig/rapa
cell therapy’ protocol) (Fig. E3A). Additionally chimerism levels were
determined at early time points (Fig. E3B). Beside the avoidance of Phl
p 5-specific IgE, no Phl p 5-specific IgG1, IgG2a, IgG3, IgM and IgA
isotypes were detectable in sera of CTLA4Ig/rapa cell therapy treated
mice long term (Fig. 3), while Bet v 1-specific antibody levels were sim-
ilar as in non-transplanted sensitizedmice (Fig. E4). The combination of
BMT with rapamycin and CTLA4Ig is necessary for full efficacy as anti-
CD40L, CTLA4Ig or rapamycin alone did not completely prevent Phl p
5-specific IgE development (Fig. E5).

Moreover to investigate if T cell tolerancewas achieved, splenocytes
ofmPhl p 5 BMC-treatedmicewere stimulatedwith rPhl p 5 in vitro. No
proliferation towards Phl p 5 was detectable in mice receiving CTLA4Ig/
rapa cell therapy, similar to splenocytes of naïve mice. On the contrary,
splenocytes of sensitizedmice showed high proliferation rates upon Phl
p 5-stimulation (Fig. 2C). Thus, humoral and T cell responses were fully
prevented with the transfer of Phl p 5-bearing BMCs under tolerogenic
immunosuppression avoiding clinically not applicable irradiation pro-
tocols (Baranyi et al., 2008).

3.3. Airway Inflammation

Group 5 allergens are a major cause of allergic asthma (Suphioglu
et al., 1992). Therefore we tested if airway inflammation can be avoided
with the protocol described above. After additional intranasal applica-
tion with rPhl p 5, mice were challenged with different doses of
methacholine in whole body plethysmography (WBP). Sensitized
non-BMT mice showed higher levels of enhanced pause (Penh)
(Fig. 4A) than naïvemice. Mice receiving BMCs under rapa and CTLA4Ig
responded weaker to methacholine provocation than sensitized mice
and in a similar manner as naïve mice. Additionally in lung tissues no
peribronchial chronic inflammatory infiltrations of lymphocytes were
detectable in BMT recipients (Fig. 4B) andnomucus productionwas vis-
ible in tolerantmice in PAS staining (Fig. 4C). Thus, airway inflammation
was avoided in mice receiving mPhl p 5 BMC under tolerogenic
immunosuppression.

3.4. B Cells Are Not Required for Specific B Cell Tolerance Induction

B cells are involved in antigen presentation by recognizing confor-
mational epitopes (Batista and Harwood, 2009). To assess whether B
cells are important in tolerance induction with CTLA4Ig/rapa cell thera-
py we depleted themwith an anti-CD20 mAb at the time of BMC trans-
fer (d−7, 0, +7). Depletion of B cells was confirmed in the peripheral
blood by flow cytometry (and was of a similar degree as in previous
publications demonstrating a mechanistic effect of CD20 depletion



Fig. 1.Generation and characterization ofmPhl p 5-transgenicmouse. (A) Construct ofmPhl p 5 construct in pcall2 vector containing the CMV-chicken beta actin enhancer/promoter and a
rabbit poly A tail. (B) Expression levels of Phl p 5 and GFP in white blood cells (blood), bone marrow, spleen and thymus. (C) Immunofluorescence of tissues of mPhl p 5 transgenic mice
stained for Phl p 5 (red) (left panel and middle panels), nuclei are stained in blue (middle panels) GFP is also visible in green (left panels), and BALB/c mice (right panels).
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Fig. 2.mPhl p 5 cell therapy combinedwith rapamycin and CTLA4Ig leads to specific B cell and T cell tolerance (A) Phl p 5-specific IgE levels in sera of mice treatedwith 15 × 106mPhl p 5
BMC and either rapamycin plus anti-CD40L (Rapa + anti-CD40L, n = 5), or rapamycin plus CTLA4-Ig (Rapa + CTLA4-Ig, n = 5) and non-transplanted immunized mice (non-BMT
sensitized) n = 5 at different time points. (B) Bet v 1-specific IgE in groups of mice described in A (n = 5 each group). (C) T-cell proliferation assays of splenocytes of mice described
in (A). Naive mice were used as control (n = 4). Results are demonstrated as box blots and medians are shown. * p b 0.05. n.s.—not significant.
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(Mollov et al., 2010)) and persisted for several weeks (Fig. 5A). After re-
covery of B cells (determined by FCM data, not shown) mice were im-
munized with mPhl p 5 splenocytes (weeks 7 and 10 after BMT). No
Phl p 5-specific IgE was detectable after two immunizations with
mPhl p 5 splenocytes in sera of mice treated with anti-CD20 antibody
(Fig. 5B), suggesting that B cells are not the main regulator in establish-
ment of B cell tolerance.

3.5. Regulation Is Not a Substantial Mechanism for Tolerance Induction

Rapamycin, anti CD40L and CTLA4Ig were all described to induce/
promote regulatory T cells (Tregs) in certain experimental settings
(Ahmadi et al., 2014; Muller et al., 2010; Linsley and Nadler, 2009). To
assess if Tregs are important for tolerance induction we depleted
CD25 positive cells (with anti-CD25 [PC61] mAb d-6, d-1) before cell
therapy (mPhl p 5 BMC + Rapa + CTLA4Ig). Depletion was confirmed
by FCM (Fig. E6). Treg depletion did not prevent development of B-
cell tolerance, since again no Phl p 5-specific IgE was detectable just as
without CD25 Ab treatment (Fig. 6A). Likewise CD25 depletion in al-
ready tolerant mice and subsequent immunization did not break B cell
tolerance (data not shown). Additionally we determined if also Th1 de-
pendent isotypes were detectable after CD25 depletion. Similarly, Phl p
5-specific IgG2a was not detectable (Fig. E8). Anti-IL2 was described to
reduce Treg numbers in different models, presumably through IL2

Image of Fig. 2


Fig. 3. CTLA4Ig/rapa cell therapy leads to B cell tolerance in several isotypes. Phl p 5-specific IgG1, IgG2a, IgG3, IgM and IgA levels in sera of mice treated with 15 × 106 mPhl p 5 BMC,
rapamycin and CTLA4-Ig (Rapa + CTLA4-Ig, n = 8) and non-transplanted immunized mice (non-BMT sensitized) n = 5 at week 16 after BMT. Results are demonstrated as box blots
and medians are shown. * p b 0.05.
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starvation, but more recently it was also shown to boost CD8+ cells
through stimulation of the low-affinity IL2 receptor (Bigenzahn et al.,
2005; Phelan et al., 2008). We treated mice before and after BMT with
anti-IL2 mAbs. Again, we could not break B cell tolerance in this setting
(Fig. E7).

The co-inhibitory receptor cytotoxic T lymphocyte antigen 4
(CTLA4) is critically involved in the suppressive function of Tregs, pre-
sumably by down-regulating CD80 and CD86 expression on antigen-
presenting cells (Sakaguchi et al., 2008). Further, autoreactive B cells
have to express PD-1 to be suppressed by Tregs (Gotot et al., 2012). Ad-
ditionally Tregs themselves express PD-1 (Francisco et al., 2010; Sage
et al., 2013). Neither a PD-1 (w 21) blocking antibody nor anti-CTLA4
blocking antibody (w 21) broke tolerance (Fig. 6B). Taken together
our data suggest that Tregs are not critically required for B cell tolerance
induced through the cell-based tolerance protocol.
4. Discussion

In this murine proof-of-concept study we present a cell therapeutic
approach for prophylaxis of IgE-mediated allergy. Robust allergen-
specific tolerance towards a clinically relevant aero-allergen is induced
permanently by treatment with allergen-bearing bone marrow cells
and short-course immunosuppression. The cell-based prophylactic tol-
erance regimen is uniquely potent in completely preventing an
allergen-specific T and B cell response, including all tested isotypes
and does not require irradiation any more. Thus the described protocol
may represent a significant step forward towards the clinical applica-
tion of cell-based prevention for allergy. Since we did not obtain evi-
dence that tTregs or pTregs are involved in the establishment of
tolerance we assume that deletion through possibly central tolerance
induction is the main mechanism in our model.

Image of Fig. 3


Fig. 4.CTLA4Ig/rapa cell therapy prevents allergic airway inflammation. (A) Penh (enhanced pause) after different concentrations ofmethacholine inWBP (whole body plethysmography)
is shown inmice treated with mPhl p 5 BMCs, rapamycin and CTLA4Ig (n= 5). Non-BM transplanted immunizedmice (n = 5) (non-BMT sensitized mice) and naïve mice (n= 4)were
used as control. (B+ C) Lung sections of mice described in (A) stainedwithH&E or PAS staining formucus production. Two representative sections are shown for each staining and group.
Pooled data of 2 independent experiments are demonstrated.
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The prophylactic tolerance protocol entails the administration of im-
munosuppressive drugs. Rapamycin is an mTOR inhibitor approved for
immunosuppression in organ transplantation (and is commonly used in
children (Ganschow et al., 2013)) and has potent tolerogenic properties
(Fischer et al., 2009; Battaglia et al., 2005). CTLA4Ig (abatacept) and its
derivative belatacept are approved for use in rheumatoid arthritis and
organ transplantation, respectively (Bonelli et al., 2013; Wekerle and
Grinyo, 2012), and have tolerogenic effects as well. However, neither
mTOR inhibition, nor CTLA4Ig are effective in establishing robust toler-
ance on their own, (Linhart et al., 2007; Pilat et al., 2011). The toxicity of

Image of Fig. 4


Fig. 5. B cells are not required for tolerance induction through CTLA4Ig/rapa cell therapy. Mice received 15 × 106 mPhl p 5 BMC plus rapamycin and CTLA4-Ig. (A) Dot blots of peripheral
blood of one representativemouse without B cell depletion (left panel) and a B cell depletedmouse (right panel). GFP expression of donor cells is demonstrated (B) Phl p 5-specific IgE in
sera of mice treated with anti-CD20 mAbs (d −7, 0, +7) (n = 4). Control mice were treated in the same manner without B-cell depletion or untreated but sensitized. Results are
demonstrated as box blots and medians are shown. * p b 0.05.
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these immunosuppressive drugs is expected to be lowwhen given for a
short-course treatment in the period of allergic sensitization (Westman
et al., 2015). Specifically, the combination of rapamycin and belatacept
has been tested in renal transplantation and was found to be safe
(Ferguson et al., 2011). No anti-CD40L mAb is clinically available yet,
but next generation anti-CD40L domain antibodies avoiding the throm-
boembolic side effects observed with conventional anti-CD40L mAbs
are under pre-clinical development (Suchard et al., 2013; Xie et al.,
2014), and anti-CD40 mAbs could soon offer an alternative as well
(Goldwater et al., 2013). The presented cell therapy regimen does not
require any cytotoxic or myelosuppressive preconditioning which has
been necessary for BM engraftment in various previous BMT regimens
(Baranyi et al., 2008; Baranyi et al., 2012), further limiting potential
safety risks.

While cells from a transgenicmousewere used in the present exper-
iments, expression of allergens on the surface of autologous cells might
be feasible through various means. Retroviral transduction is currently
insufficiently safe for non-vital indications (Hacein-Bey-Abina et al.,
2010), but site-specific integration of genes into HSC of cord blood be-
came recently possible and might eventually provide a viable option
(Genovese et al., 2014). Chemical coupling of allergens might provide
an attractive alternative (Jenkins and Schwartz, 2009; Getts et al.,
2011). While not directly tested in the present study, antigen expres-
sion is likely required for a limited period only, as transient chimerism
is effective in permanently tolerizing an alloresponse in experimental
models (Tian et al., 2002; Tian et al., 2006) and the clinical setting
(Kawai et al., 2008). The use of hypoallergenic allergen derivatives
(Valenta et al., 2010), or allergen-derived peptides containing the rele-
vant T cell epitopes (Focke-Tejkl et al., 2014), might further enhance
the safety aspects of this approach, avoiding the risk of triggering ana-
phylaxis. Mobilized peripheral blood stem cells have been successfully
used instead of BM cells in the setting of transplantation tolerance
(Koporc et al., 2008; Scandling et al., 2008), and would be a clinically
more acceptable cell source as they can be obtained non-invasively.

Image of Fig. 5


Fig. 6. Regulation is not a critical mechanism for tolerance induction and maintenance through CTLA4Ig/rapa cell therapy. (A) Half of recipients (BMC+ Rapa + CTLA4-Ig) (n = 8) were
treatedwith anti-CD25mAb (PC61) before BMT (BMT+Rapa+CTLA4-Ig PC61 early) (n= 4) or left untreated (sensitized) (n=5). Phl p 5-specific IgE is demonstrated after 1st and 2nd
immunization (B) Phl p 5-specific IgE levels before (w20) and after treatmentwith anti PD1-mAb (tolerant anti-PD1 treated n=4) or anti CTLA4mAb (tolerant anti-CTLA4 treated) (n=
4) (w25) or sensitized only (n = 3). Results are demonstrated as box blots and medians are shown. * p b 0.05.
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Eventually, cord-blood could serve as the ideal hematopoietic cells
source (Pineault and Abu-Khader, 2015).

In conclusion, the results presented herein provide evidence that
allergen-specific tolerance can be established prophylactically through
cell therapywith allergen-expressing BMcells under tolerogenic immu-
nosuppression without irradiation. They also offer a long-term vision of
how step-wise clinical translation might eventually be realized to pre-
vent IgE-mediated allergy by cell-based approaches.
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