67 research outputs found

    Student Entrepreneurial Identity Formation: The Role of Reflection

    Get PDF

    Gennemførelse af lokale Forsøg.

    Get PDF
    Gennemførelse af lokale Forsøg

    Effects of lithium on electrical activity and potassium ion distribution in the vertebrate central nervous system

    Get PDF
    Three different regions of the vertebrate central nervous system maintained in vitro (frog spinal cord, guinea pig olfactory cortex and hippocampus) have been used to investigate how Li+ influences membrane potential, membrane resistance, action potentials, synaptic potentials and the transmembrane K+-distribution of neurons and glial cells. In view of the therapeutic action of Li+ in manicdepressive disease, a special effort was made to determine the threshold concentration for the actions of Li+ on the parameters described above. It was observed that Li+ induced a membrane depolarization of both neurons and glial cells, a decrease of action potential amplitudes, a facilitation of monosynaptic excitatory postsynaptic potentials and a depression of polysynaptic reflexes. The membrane resistance of neurons was not altered. Li+ also induced an elevation of the free extracellular potassium concentration and a decrease of the free intracellular potassium concentration. Furthermore, in the presence of Li+ a slowing of the recovery of the membrane potential of neurons and glial cells, and of the extracellular potassium concentration after repetitive synaptic stimulation was observed. The threshold concentrations for the effects of Li+ were below 5 mmol/l in the frog spinal cord and below 2 mmol/l in the guinea pig olfactory cortex and hippocampus. The basic mechanism underlying the action of Li+ may be an interaction with the transport-function of the Na+/K+ pump

    Involvement of the Glycogen Synthase Kinase-3 Signaling Pathway in TBI Pathology and Neurocognitive Outcome

    Get PDF
    BACKGROUND: Traumatic brain injury (TBI) sets in motion cascades of biochemical changes that result in delayed cell death and altered neuronal architecture. Studies have demonstrated that inhibition of glycogen synthase kinase-3 (GSK-3) effectively reduces apoptosis following a number of stimuli. The Wnt family of proteins, and growth factors are two major factors that regulate GSK-3 activity. In the absence of stimuli, GSK-3 is constitutively active and is complexed with Axin, adenomatous polyposis coli (APC), and casein kinase Iα (CK1α) and phosphorylates ß-Catenin leading to its degradation. Binding of Wnt to Frizzled receptors causes the translocation of GSK-3 to the plasma membrane, where it phosphorylates and inactivates the Frizzled co-receptor lipoprotein-related protein 6 (LRP6). Furthermore, the translocation of GSK-3 reduces ß-Catenin phosphorylation and degradation, leading to ß-Catenin accumulation and gene expression. Growth factors activate Akt, which in turn inhibits GSK-3 activity by direct phosphorylation, leading to a reduction in apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Using a rodent model, we found that TBI caused a rapid, but transient, increase in LRP6 phosphorylation that is followed by a modest decrease in ß-Catenin phosphorylation. Phospho-GSK-3β immunoreactivity was found to increase three days post injury, a time point at which increased Akt activity following TBI has been observed. Lithium influences several neurochemical cascades, including inhibiting GSK-3. When the efficacy of daily lithium was assessed, reduced hippocampal neuronal cell loss and learning and memory improvements were observed. These influences were partially mimicked by administration of the GSK-3-selective inhibitor SB-216763, as this drug resulted in improved motor function, but only a modest improvement in memory retention and no overt neuroprotection. CONCLUSION/SIGNIFICANCE: Taken together, our findings suggest that selective inhibition of GSK-3 may offer partial cognitive improvement. As a broad spectrum inhibitor of GSK-3, lithium offers neuroprotection and robust cognitive improvement, supporting its clinical testing as a treatment for TBI

    Branding Amsterdam: The Roles of Residents in City Branding

    No full text
    • …
    corecore