52 research outputs found

    Tiotropium modulates transient receptor potential V1 (TRPV1) in airway sensory nerves: A beneficial off-target effect?⋆

    Get PDF
    BackgroundRecent studies have suggested that the long-acting muscarinic receptor antagonist tiotropium, a drug widely prescribed for its bronchodilator activity in patients with chronic obstructive pulmonary disease and asthma, improves symptoms and attenuates cough in preclinical and clinical tussive agent challenge studies. The mechanism by which tiotropium modifies tussive responses is not clear, but an inhibition of vagal tone and a consequent reduction in mucus production from submucosal glands and bronchodilation have been proposed.ObjectiveThe aim of this study was to investigate whether tiotropium can directly modulate airway sensory nerve activity and thereby the cough reflex.MethodsWe used a conscious cough model in guinea pigs, isolated vagal sensory nerve and isolated airway neuron tissue– and cell-based assays, and in vivo single-fiber recording electrophysiologic techniques.ResultsInhaled tiotropium blocked cough and single C-fiber firing in the guinea pig to the transient receptor potential (TRP) V1 agonist capsaicin, a clinically relevant tussive stimulant. Tiotropium and ipratropium, a structurally similar muscarinic antagonist, inhibited capsaicin responses in isolated guinea pig vagal tissue, but glycopyrrolate and atropine did not. Tiotropium failed to modulate other TRP channel–mediated responses. Complementary data were generated in airway-specific primary ganglion neurons, demonstrating that tiotropium inhibited capsaicin-induced, but not TRPA1-induced, calcium movement and voltage changes.ConclusionFor the first time, we have shown that tiotropium inhibits neuronal TRPV1-mediated effects through a mechanism unrelated to its anticholinergic activity. We speculate that some of the clinical benefit associated with taking tiotropium (eg, in symptom control) could be explained through this proposed mechanism of action

    Transient receptor potential cation channel, subfamily V, member 4 and airway sensory afferent activation: Role of adenosine triphosphate

    Get PDF
    BackgroundSensory nerves innervating the airways play an important role in regulating various cardiopulmonary functions, maintaining homeostasis under healthy conditions and contributing to pathophysiology in disease states. Hypo-osmotic solutions elicit sensory reflexes, including cough, and are a potent stimulus for airway narrowing in asthmatic patients, but the mechanisms involved are not known. Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) is widely expressed in the respiratory tract, but its role as a peripheral nociceptor has not been explored.ObjectiveWe hypothesized that TRPV4 is expressed on airway afferents and is a key osmosensor initiating reflex events in the lung.MethodsWe used guinea pig primary cells, tissue bioassay, in vivo electrophysiology, and a guinea pig conscious cough model to investigate a role for TRPV4 in mediating sensory nerve activation in vagal afferents and the possible downstream signaling mechanisms. Human vagus nerve was used to confirm key observations in animal tissues.ResultsHere we show TRPV4-induced activation of guinea pig airway–specific primary nodose ganglion cells. TRPV4 ligands and hypo-osmotic solutions caused depolarization of murine, guinea pig, and human vagus and firing of Aδ-fibers (not C-fibers), which was inhibited by TRPV4 and P2X3 receptor antagonists. Both antagonists blocked TRPV4-induced cough.ConclusionThis study identifies the TRPV4-ATP-P2X3 interaction as a key osmosensing pathway involved in airway sensory nerve reflexes. The absence of TRPV4-ATP–mediated effects on C-fibers indicates a distinct neurobiology for this ion channel and implicates TRPV4 as a novel therapeutic target for neuronal hyperresponsiveness in the airways and symptoms, such as cough

    AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons

    Get PDF
    Hypothalamic AMP-activated protein kinase (AMPK) has been suggested to act as a key sensing mechanism, responding to hormones and nutrients in the regulation of energy homeostasis. However, the precise neuronal populations and cellular mechanisms involved are unclear. The effects of long-term manipulation of hypothalamic AMPK on energy balance are also unknown. To directly address such issues, we generated POMC alpha 2KO and AgRP alpha 2KO mice lacking AMPK alpha 2 in proopiomelanocortin- (POMC-) and agouti-related protein-expressing (AgRP-expressing) neurons, key regulators of energy homeostasis. POMC alpha 2KO mice developed obesity due to reduced energy expenditure and dysregulated food intake but remained sensitive to leptin. in contrast, AgRPa2KO mice developed an age-dependent lean phenotype with increased sensitivity to a melanocortin agonist. Electrophysiological studies in AMPK alpha 2-deficient POMC or AgRP neurons revealed normal leptin or insulin action but absent responses to alterations in extracellular glucose levels, showing that glucose-sensing signaling mechanisms in these neurons are distinct from those pathways utilized by leptin or insulin. Taken together with the divergent phenotypes of POMC alpha 2KO and AgRP alpha 2KO mice, our findings suggest that while AMPK plays a key role in hypothalamic function, it does not act as a general sensor and integrator of energy homeostasis in the mediobasal hypothalamus

    Contributions to early HIV diagnosis among patients linked to care vary by testing venue

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Early HIV diagnosis reduces transmission and improves health outcomes; screening in non-traditional settings is increasingly advocated. We compared test venues by the number of new diagnoses successfully linked to the regional HIV treatment center and disease stage at diagnosis.</p> <p>Methods</p> <p>We conducted a retrospective cohort study using structured chart review of newly diagnosed HIV patients successfully referred to the region's only HIV treatment center from 1998 to 2003. Demographics, testing indication, risk profile, and initial CD4 count were recorded.</p> <p>Results</p> <p>There were 277 newly diagnosed patients meeting study criteria. Mean age was 33 years, 77% were male, and 46% were African-American. Median CD4 at diagnosis was 324. Diagnoses were earlier via partner testing at the HIV treatment center (N = 8, median CD4 648, p = 0.008) and with universal screening by the blood bank, military, and insurance companies (N = 13, median CD4 483, p = 0.05) than at other venues. Targeted testing by health care and public health entities based on patient request, risk profile, or patient condition lead to later diagnosis.</p> <p>Conclusion</p> <p>Test venues varied by the number of new diagnoses made and the stage of illness at diagnosis. To improve the rate of early diagnosis, scarce resources should be allocated to maximize the number of new diagnoses at screening venues where diagnoses are more likely to be early or alter testing strategies at test venues where diagnoses are traditionally made late. Efforts to improve early diagnosis should be coordinated longitudinally on a regional basis according to this conceptual paradigm.</p

    Smoking patterns and stimulus control in intermittent and daily smokers

    Get PDF
    Intermittent smokers (ITS) - who smoke less than daily - comprise an increasing proportion of adult smokers. Their smoking patterns challenge theoretical models of smoking motivation, which emphasize regular and frequent smoking to maintain nicotine levels and avoid withdrawal, but yet have gone largely unexamined. We characterized smoking patterns among 212 ITS (smoking 4-27 days per month) compared to 194 daily smokers (DS; smoking 5-30 cigarettes daily) who monitored situational antecedents of smoking using ecological momentary assessment. Subjects recorded each cigarette on an electronic diary, and situational variables were assessed in a random subset (n = 21,539 smoking episodes); parallel assessments were obtained by beeping subjects at random when they were not smoking (n = 26,930 non-smoking occasions). Compared to DS, ITS' smoking was more strongly associated with being away from home, being in a bar, drinking alcohol, socializing, being with friends and acquaintances, and when others were smoking. Mood had only modest effects in either group. DS' and ITS' smoking were substantially and equally suppressed by smoking restrictions, although ITS more often cited self-imposed restrictions. ITS' smoking was consistently more associated with environmental cues and contexts, especially those associated with positive or "indulgent" smoking situations. Stimulus control may be an important influence in maintaining smoking and making quitting difficult among ITS. © 2014 Shiffman et al

    Act now against new NHS competition regulations: an open letter to the BMA and the Academy of Medical Royal Colleges calls on them to make a joint public statement of opposition to the amended section 75 regulations.

    Get PDF

    Smart Gamification and Smart Serious Games

    No full text

    Neuro-phenotypes in Airway Diseases: insights from translational cough studies.

    No full text
    Rationale: Most airway diseases, including chronic obstructive pulmonary disease (COPD), are associated with excessive coughing. The extent to which this may be a consequence of increased activation of vagal afferents by pathology in the airways (e.g., inflammatory mediators, excessive mucus) or an altered neuronal phenotype is unknown. Understanding whether respiratory diseases are associated with dysfunction of airway sensory nerves has the potential to identify novel therapeutic targets. Objectives: To assess the changes in cough responses to a range of inhaled irritants in COPD and model these in animals to investigate the underlying mechanisms. Methods: Cough responses to inhaled stimuli in patients with COPD, healthy smokers, refractory chronic cough, asthma, and healthy volunteers were assessed and compared with vagus/airway nerve and cough responses in a cigarette smoke (CS) exposure guinea pig model. Measurements and Main Results: Patients with COPD had heightened cough responses to capsaicin but reduced responses to prostaglandin E(2) compared with healthy volunteers. Furthermore, the different patient groups all exhibited different patterns of modulation of cough responses. Consistent with these findings, capsaicin caused a greater number of coughs in CS-exposed guinea pigs than in control animals; similar increased responses were observed in ex vivo vagus nerve and neuron cell bodies in the vagal ganglia. However, responses to prostaglandin E(2) were decreased by CS exposure. Conclusions: CS exposure is capable of inducing responses consistent with phenotypic switching in airway sensory nerves comparable with the cough responses observed in patients with COPD. Moreover, the differing profiles of cough responses support the concept of disease-specific neurophenotypes in airway disease. Clinical trial registered with www.clinicaltrials.gov (NCT 01297790)
    • …
    corecore