431 research outputs found

    Mass accommodation coefficient measurements for HNO3, HCl and N2O5 on water, ice and aqueous sulfuric acid droplet surfaces

    Get PDF
    Preliminary results are reported of the direct measurement of accommodation coefficients for HNO3, N2O5 and HCl on water drops, aqueous sulfuric acid drops and ice particles. The heterogeneous chemistry of these species together with ClONO2 has been implicated in the ozone depletion observed in the Antarctic stratosphere during the spring in the last eight years. The most plausible chemical mechanism involves the removal of nitrogen oxide species via condensation on ice particles in polar stratospheric clouds resulting in a increase in the active chlorine species responsible for the ozone depletion. The observation of low NO2 and high ClO densities in the Antarctic stratosphere last summer appear to be consistent with such a mechanism

    Interactions between aerosol organic components and liquid water content during haze episodes in Beijing

    Get PDF
    Aerosol liquid water (ALW) is ubiquitous in ambient aerosol and plays an important role in the formation of both aerosol organics and inorganics. To investigate the interactions between ALW and aerosol organics during haze formation and evolution, ALW was modelled based on long-term measurement of submicron aerosol composition in different seasons in Beijing. ALW contributed by aerosol inorganics (ALW(inorg)) was modelled by ISORROPIA II, and ALW contributed by organics (ALW(org)) was estimated with kappa-Kohler theory, where the real-time hygroscopicity parameter of the organics (kappa(org)) was calculated from the real-time organic oxygen-to-carbon ratio (O/C). Overall particle hygroscopicity (kappa(total)) was computed by weighting component hygroscopicity parameters based on their volume fractions in the mixture. We found that ALW(org), which is often neglected in traditional ALW modelling, contributes a significant fraction (18 %-32 %) to the total ALW in Beijing. The ALW(org) fraction is largest on the cleanest days when both the organic fraction and kappa(org) are relatively high. The large variation in O/C, from 0.2 to 1.3, indicates the wide variety of organic components. This emphasizes the necessity of using real-time kappa(org), instead of fixed kappa(org), to calculate ALW(org) in Beijing. The significant variation in K org (calculated from O/C), together with highly variable organic or inorganic volume fractions, leads to a wide range of kappa(total) (between 0.20 and 0.45), which has a great impact on water uptake. The variation in organic O/C, or derived K org , was found to be influenced by temperature (T), ALW, and aerosol mass concentrations, among which T and ALW both have promoting effects on O/C. During high-ALW haze episodes, although the organic fraction decreases rapidly, O/C and derived K org increase with the increase in ALW, suggesting the formation of more soluble organics via heterogeneous uptake or aqueous processes. A positive feedback loop is thus formed: during high-ALW episodes, increasing kappa(org), together with decreasing particle organic fraction (or increasing particle inorganic fraction), increases kappa(total), and thus further promotes the ability of particles to uptake water.Peer reviewe

    Laboratory Studies of Chemical and Photochemical Processes Relevant to Stratospheric Ozone

    Get PDF
    The purpose of this project is to reduce the uncertainty in several key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring rate coefficients and product channels for reactions of HOx and NOx species in the temperature range 200 K to 240 K relevant to the lower stratosphere. Other areas of study have included infrared spectroscopic studies of the HO radical, measurements of OH radical reactions with alternative fluorocarbons, and determination of the vapor pressures of nitric acid hydrates under stratospheric conditions. The results of these studies will improve models of stratospheric ozone chemistry and predictions of perturbations due to human influences

    Laboratory studies of chemical and photochemical processes relevant to stratospheric ozone

    Get PDF
    The purpose of this project is to reduce the uncertainty in several key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring rate coefficients and product channels for reactions of HO(sub x) and NO(sub x) species in the temperature range 200 K to 240 K relevant to the lower stratosphere. Other areas of study have included infrared spectroscopic studies of the HO2 radical, measurements of OH radical reactions with alternative fluorocarbons, and determination of the vapor pressures of nitric acid hydrates under stratospheric conditions. The results of these studies will improve models of stratospheric ozone chemistry and predictions of perturbations due to human influences. In this annual report, we focus on our recent accomplishments in the quantitative spectroscopy of the HO2 radical. This report details the measurements of the broadening coefficients for the v(sub 2) vibrational band. Further measurements of the vapor pressures of nitric acid hydrates relevant to the polar stratospheric cloud formation indicate the importance of metastable crystalline phases of H2SO4, HNO3, and H2O. Large particles produced from these metastable phases may provide a removal mechanism for HNO3 in the polar stratosphere

    Characterization of positive clusters in the CLOUD nucleation experiments

    Get PDF
    The mechanism of new particle formation (NPF) events is still poorly understood. The CLOUD experiment is studying at which conditions this process occurs. During the CLOUD 7 campaign (fall 2012) the evolution of the nucleation rate with different reagents (sulphuric acid, ammonia, dimethylamine and α-pinene) was tested. Here we investigate the composition of freshly formed positive ions during the nucleation process, which allows us to understand the formation mechanisms of these clusters. The time evolution of the clusters is shown demonstrating the correlation between the formation of these clusters and the nucleation process

    Carbon in solution and the Charpy impact performance of medium Mn steels

    Get PDF
    Carbon is a well known austenite stabiliser and can be used to alter the stacking fault energy and stability against martensitic transformation in medium Mn steels, producing a range of deformation mechanisms such as the Transformation Induced Plasticity (TRIP) or combined Twinning and Transformation Induced Plasticity (TWIP + TRIP) effects. However, the effect of C beyond quasi-static tensile behaviour is less well known. Therefore, two medium Mn steels with 0.2 and 0.5 wt pct C were designed to produce similar austenite fractions and stability and therefore tensile behaviour. These were processed to form lamellar and mixed equiaxed + lamellar microstructures. The low C steel had a corrected Charpy impact energy (KV10 ) of 320 J cm-2 compared to 66 J cm-2 in the high C steel despite both having a ductility of over 35 pct. Interface segregation, e.g., of tramp elements, was investigated as a potential cause and none was found. Only a small amount of Mn rejection from partitioning was observed at the interface. The fracture surfaces were investigated and the TRIP effect was found to occur more readily in the Low C Charpy specimen. Therefore it is concluded that the use of C to promote TWIP + TRIP behaviour should be avoided in alloy design but the Charpy impact performance can be understood purely in terms of C in solution

    Aircraft-based aerosol size and composition measurements during ACE-Asia using an Aerodyne aerosol mass spectrometer

    Get PDF
    An Aerodyne aerosol mass spectrometer (AMS) was deployed during the Aerosol Characterization Experiment-Asia (ACE-Asia) field campaign on board the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft to measure the size-resolved chemical composition of submicron aerosols in the outflow from eastern Asia. Research flights were carried out from 31 March to 1 May 2001 in an area that covered 127°E–135°E and 32°N–38°N. Valid data from the AMS were obtained during 15 out of a total of 19 research flights. During the mission the AMS measured distinct layers (from the boundary layer to ∼3700 m) of submicron aerosols composed of sulfate, ammonium, and organics as the major nonrefractory components, separated by layers with much lower aerosol concentrations. Sulfate and organics mass concentrations of up to 10 μg m^(−3) and 13 μg m^(−3), respectively, were measured in some pollution layers. Back-trajectory analysis shows that the polluted layers originated in urban and industrial areas of China and Korea. The mass-weighed size distribution of the submicron sulfate was relatively constant from day to day and layer to layer, with an aerodynamic diameter mode of 400–500 nm and a width (full width half maximum) of about 450 nm in most of the layers. On the days with low influence of dust in the aerosol outflow, as indicated by other instruments aboard the Twin Otter, the total mass of nonrefractory aerosols estimated by the AMS correlated well with total volume of aerosols measured by a differential mobility analyzer

    Resolving anthropogenic aerosol pollution types - deconvolution and exploratory classification of pollution events

    Get PDF
    Mass spectrometric measurements commonly yield data on hundreds of variables over thousands of points in time. Refining and synthesizing this raw data into chemical information necessitates the use of advanced, statisticsbased data analytical techniques. In the field of analytical aerosol chemistry, statistical, dimensionality reductive methods have become widespread in the last decade, yet comparable advanced chemometric techniques for data classification and identification remain marginal. Here we present an example of combining data dimensionality reduction (factorization) with exploratory classification (clustering), and show that the results cannot only reproduce and corroborate earlier findings, but also complement and broaden our current perspectives on aerosol chemical classification. We find that applying positive matrix factorization to extract spectral characteristics of the organic component of air pollution plumes, together with an unsupervised clustering algorithm, k -means C C, for classification, reproduces classical organic aerosol speciation schemes. Applying appropriately chosen metrics for spectral dissimilarity along with optimized data weighting, the source-specific pollution characteristics can be statistically resolved even for spectrally very similar aerosol types, such as different combustion-related anthropogenic aerosol species and atmospheric aerosols with similar degree of oxidation. In addition to the typical oxidation level and source-driven aerosol classification, we were also able to classify and characterize outlier groups that would likely be disregarded in a more conventional analysis. Evaluating solution quality for the classification also provides means to assess the performance of mass spectral simi-larity metrics and optimize weighting for mass spectral variables. This facilitates algorithm-based evaluation of aerosol spectra, which may prove invaluable for future development of automatic methods for spectra identification and classification. Robust, statistics-based results and data visualizations also provide important clues to a human analyst on the existence and chemical interpretation of data structures. Applying these methods to a test set of data, aerosol mass spectrometric data of organic aerosol from a boreal forest site, yielded five to seven different recurring pollution types from various sources, including traffic, cooking, biomass burning and nearby sawmills. Additionally, three distinct, minor pollution types were discovered and identified as amine-dominated aerosols.Peer reviewe
    • …
    corecore