1,857 research outputs found

    Differential chemical abundance analysis of a 47 Tuc AGB star with respect to Arcturus

    Full text link
    This study resolves a discrepancy in the abundance of Zr in the 47 Tucanae asymptotic giant branch star Lee 2525. This star was observed using the echelle spectrograph on the 2.3 m telescope at Siding Spring Observatory. The analysis was undertaken by calibrating Lee 2525 with respect to the standard giant star Arcturus. This work emphasises the importance of using a standard star with stellar parameters comparable to the star under analysis rather than a calibration with respect to the Sun (Koch & McWilliam 2008). Systematic errors in the analysis process are then minimised due to the similarity in atmospheric structure between the standard and programme stars. The abundances derived for Lee 2525 were found to be in general agreement with the Brown & Wallerstein (1992) values except for Zr. In this study Zr has a similar enhancement ([Zr/Fe] = +0.51 dex) to another light s-process element, Y ([Y/Fe] = +0.53 dex), which reflects current theory regarding the enrichment of s-process elements by nuclear processes within AGB stars (Busso et al. 2001). This is contrary to the results of Brown & Wallerstein (1992) where Zr was under-abundant ([Zr/Fe] = +0.51 dex) and Y was over-abundant ([Y/Fe] = +0.50 dex) with respect to Fe.Comment: 11 pages, 5 figures Accepted for publication in MNRA

    Accepting the Challenge: A Case Study in Pedagogical Inquiry

    Get PDF
    Higher education has been criticized for not fulfilling its democratic purpose—that is, to prepare students for citizenship, not just careers. Longo and Gibson (2016) argue that “as access to higher education has increased, many colleges and universities ironically have become more detached from their public missions,” leading to the increasing separation between learning and social purpose (p. 61). Many schools and departments have already begun the hard work of reevaluation and critical reflection in response to such criticism and are helping to reinvent American higher education (Hartley & Hollander, 2005). Three such examples are communication programs featured as case studies by AAC&U in Civic Learning in the Major by Design because they have incorporated civic and social responsibility requirements into their major (Carey, 2017)

    Climbing the cosmic ladder with stellar twins

    Full text link
    Distances to stars are key to revealing a three-dimensional view of the Milky Way, yet their determination is a major challenge in astronomy. Whilst the brightest nearby stars benefit from direct parallax measurements, fainter stars are subject of indirect determinations with uncertainties exceeding 30%. We present an alternative approach to measuring distances using spectroscopically-identified twin stars. Given a star with known parallax, the distance to its twin is assumed to be directly related to the difference in their apparent magnitudes. We found 175 twin pairs from the ESO public HARPS archives and report excellent agreement with Hipparcos parallaxes within 7.5%. Most importantly, the accuracy of our results does not degrade with increasing stellar distance. With the ongoing collection of high-resolution stellar spectra, our method is well-suited to complement Gaia.Comment: published online on MNRA

    The AMBRE Project: Stellar Parameterisation of the ESO:UVES archived spectra

    Full text link
    The AMBRE Project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Cote d'Azur (OCA) that has been established in order to carry out the determination of stellar atmospheric parameters for the archived spectra of four ESO spectrographs. The analysis of the UVES archived spectra for their stellar parameters has been completed in the third phase of the AMBRE Project. From the complete ESO:UVES archive dataset that was received covering the period 2000 to 2010, 51921 spectra for the six standard setups were analysed. The AMBRE analysis pipeline uses the stellar parameterisation algorithm MATISSE to obtain the stellar atmospheric parameters. The synthetic grid is currently constrained to FGKM stars only. Stellar atmospheric parameters are reported for 12,403 of the 51,921 UVES archived spectra analysed in AMBRE:UVES. This equates to ~23.9% of the sample and ~3,708 stars. Effective temperature, surface gravity, metallicity and alpha element to iron ratio abundances are provided for 10,212 spectra (~19.7%), while at least effective temperature is provided for the remaining 2,191 spectra. Radial velocities are reported for 36,881 (~71.0%) of the analysed archive spectra. Typical external errors of sigmaTeff~110dex, sigmalogg~0.18dex, sigma[M/H]~0.13dex, and sigma[alpha/Fe]~0.05dex with some reported variation between giants and dwarfs and between setups are reported. UVES is used to observe an extensive collection of stellar and non-stellar objects all of which have been included in the archived dataset provided to OCA by ESO. The AMBRE analysis extracts those objects which lie within the FGKM parameter space of the AMBRE slow rotating synthetic spectra grid. Thus by homogeneous blind analysis AMBRE has successfully extracted and parameterised the targeted FGK stars (23.9% of the analysed sample) from within the ESO:UVES archive.Comment: 19 pages, 16 figures, 11 table

    A method for determining an optimum shape of a class of thin shells of revolution

    Get PDF
    Optimum shape of convex thin shell of revolution with respect to volume, weight and length - mathematical functio
    • …
    corecore