T.\&A.M. REPORT NO. 281

A METHOD FOR DETERMINING AN OPTIMUM SHAPE OF A CLASS OF THIN SHELLS OF REVOLUTION

GPO PRICE
\$ \qquad
CSFTI PRICE(S) \$ \qquad

ff 653 July 65

> by
> Morris Stern
> Han-chung Wang
> Will J. Worley

$$
N \operatorname{scof} 34
$$

Prepared Under Grant No. (NGR-14-005-010) NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON. D.C.

DEPARTMENT OF THEORETICAL AND APPLIED MECHANICS
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS A CLASS OF THIN SHELLS OF REVOLUTION
by

Morris Stern
Han-chung Wang
Will J. Worley

Prepared under Grant No. NGR 14-005-010
by the
for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C.
July, 1965

TABLE OF CONTENTS

Page
SUMMARY 1
INTRODUCTION 2

1. Statement of the Problem 2
2. Symbols 4
3. Acknowledgment 6
DISCUSSION OF THE METHOD 7
MATHEMATICAL FORMULATION 10
NUMERICAL INTEGRATION 16
NUMERICAL COMPUTATIONS 20
4. The Ranges of the Volumes and Weights of Shells 20
5. Weighting Functions λ and μ 22
6. Numerical Examples 23
APPENDIXES 27
A. Iteration Procedure with Varying Shell Length 27
B. FORTRAN Programs 28
REFERENCES 39
TABLES 40
I. Iteration Results for $\lambda=\lambda_{1}, \mu=\mu_{1}, b / a=1, \alpha_{0}=1.5, \beta_{0}=1.5-$ 40
II. Iteration Results for $\lambda=\lambda_{1}, \mu=\mu_{1}, b / a=1, \alpha_{0}=2.0, \beta_{0}=3.0-$ 41
III. Iteration Results for $\lambda=\lambda_{1}, \mu=\mu_{1}, \mathrm{~b} / \mathrm{a}=2, \alpha_{0}=1.5, \beta_{0}=1.5-$ 42
IV. Iteration Results for $\lambda=\lambda_{1} ; \mu=\mu_{1}, \mathrm{~b} / \mathrm{a}=2, \alpha_{\mathrm{o}}=2.0, \beta_{\mathrm{o}}=3.0-$ 43
V. Iteration Results for $\lambda=\lambda_{2} ; \mu=\mu_{2} \quad \mathrm{~b} / \mathrm{a}=1$ 44
VI. Iteration Results for $\lambda=\lambda_{3}, \mu=\mu_{3}, \mathrm{~b} / \mathrm{a}=1$ 45
FIGURES 46
7. Weighting Functions λ_{1} and μ_{1} 46
8. Weighting Functions λ_{2} and μ_{2} 46
9. Variation of the Function F with α and β 47
10. Variation in Projections of Ridges on $\alpha-\beta$ Plane 48
11. Variation in $\mathrm{V}_{\mathrm{xa}} / \mathrm{ab}^{2}$ with α and β 49
12. Variation in $\mathrm{A} / \mathrm{a}^{2}$ with α and β for $\mathrm{b} / \mathrm{a}=1.0$ 50

A METHOD FOR DETERMINING AN OPTIMUM SHAPE OF
 A CLASS OF THIN SHELLS OF REVOLUTION

by
Morris Stern, Han-chung Wang, Will J. Worley
Department of Theoretical and Applied Mechanics
University of Illinois Urbana, Illinois

SUMMARY

33503
This third report under the current grant is concerned with a method for determining an optimum shape of a convex shell of revolution with respect to volume, weight and length.

The technique used depends on replacing the class of functions, over which the shape may range, by the parameters $b / a, \alpha$ and β in the equation

$$
\left|\frac{x}{a}\right|^{\alpha}+\left|\frac{y}{b}\right|^{\beta}=1
$$

where $\mathrm{a}, \mathrm{b}, \alpha$ and β are positive constants not necessarily integers, with α and β equal to or greater than unity. The bodies of revolution are generated by revolving the line, described by the above equation, about the x-axis.

The procedure is illustrated for a thin shell which will fit within the space defined by a circular cylinder of radius b and length $2 a$. The shell is optimized, in terms of α and β, with respect to volume and weight. The FORTRAN program used to achieve these results is presented in Appendix B.

INTRODUCTION

1. Statement of the Problem.

The previous reports under the current grant, $[1,2]^{*}$ stated a future objective of the project as being the optimum contour design of a class of shells. This third report is directed toward achieving that objective in terms of enclosed volume and shell weight for thin shells of revolution.

Optimization can be treated in several ways. A general formulation of the optimization of the design of thin shells of revolution might include the determination of the shell shape as well as the variation of the shell thickness along meridionallines. A less general approach involves assigning the shape and varying the shell thickness $[3,4]$. The current report treats an alternate approach. Here a uniform thickness is maintained, but the meridional lines which define the geometry are permitted to vary in accordance with the relation

$$
\begin{equation*}
\left|\frac{x}{a}\right|^{\alpha}+\left|\frac{y}{b}\right|^{\beta}=1 \tag{3.1}
\end{equation*}
$$

where a, b, α and β are positive constants, not necessarily integers.
The use of Eq. (3.1) permits an optimization of shape which is limited to the choice of the parameters α and β for a shell of length 2 a and of radius b. The body of this report is limited to the variation of α and β for fixed length and fixed diameter, but Appendix A presents a mathematical formulation which permits the length to vary as well as α and β.

The achievement of the stated objective depends on a suitable failure criterion. One criterion could involve a complete stress analysis of the shell including varying thickness. Others could include thick walled shells or buckling. However, in illustrating the method, the shells have been restricted to thin, constant thickness walls with internal pressure loading. Further the failure is assumed to occur either on the central plane circle normal to the x-axis at $x=0$ or along a meridian. Thus separate computer programs which involve the complete stress analysis of the shell have not been used.

[^0]The techniques described can be applied in a manner which would permit the direct inclusion of one of the existing computer programs on the stress analysis of shells $[5,6,7]$. These auxilliary computer programs would provide the thickness requirement or the variation in thickness of the shell when incorporated into the proper location within the FORTRAN program presented in this report.
In this way the optimized shell would be based on a more realistic failure criterion than is actually reported.
2. Symbols
a
half length of the shell, [L]*
b radius of the shell in the equatorial plane, [L]
x
y
g
$V_{x a} \quad$ volume of the shell, $\left[L^{3}\right]$
W

A
weight of the shell, $\left[\mathrm{MLT}^{-2}\right]$
surface area of the shell, $[1]$

A
L arc length in the first quadrant of Eq. (3.1), [L]
t
thickness of the shell, [L]
$\mathrm{V}_{\text {min }}$
$W_{\text {max }}$
preassigned minimum allowable volume of the shell, $\left[L^{3}\right]$
$a_{\text {max }}$
$\mathrm{V}_{\mathrm{cyl}}$
$W_{c y l}$
v
preassigned maximum allowable weight of the shell, $\left[\mathrm{MLT}^{-2}\right]$
preassigned maximum half length of the shell, [L]
volume of cylinder with radius b, length $2 a,\left[L^{3}\right]$
weight of cylindrical shell with radius b, length $2 a,\left[M L T^{-2}\right]$
ratio of $\mathrm{V}_{\mathrm{xa}} / \mathrm{V}_{\text {min }}, \quad[1]$
w
ratio of $\mathrm{W} / \mathrm{W}_{\text {max }} \quad[1]$
$\ell \quad$ ratio of $a / a_{\text {max }}$ [1]
$h^{2} \quad\left(\frac{b \alpha}{a \beta}\right)^{2},[1]$
*The dimensional notation $[\mathrm{L}]$ indicates a length while $[\mathrm{M}]$ indicates mass, $[\mathrm{T}]$
indicates time and $[1]$ indicates a dimensionless quantity.

$\mathrm{p}_{0} \quad \mathrm{u}$	uniform internal pressure on shells, $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
$\mathrm{k}_{\mathrm{o}} \quad \mathrm{p}$	preselected limiting value for the ratio $\Delta \alpha / \mathrm{F}_{\alpha}$ or $\Delta \beta / \mathrm{F}_{\beta}$ of iteration, [1]
$\alpha \quad$ ex	exponent of the absolute value of $\mathrm{x} / \mathrm{a}, \mathrm{l}]$
$\beta \quad$ e	exponent of the absolute value of $\mathrm{y} / \mathrm{b},[1]$
$\alpha \quad$ ((as a subscript) indicates partial differentiation with respect to α, [1]
$\beta \quad$ ((as a subscript) indicates partial differentiation with respect to β, [1]
$\rho \quad \mathrm{m}$	mass density, $\left[\mathrm{ML}^{-3}\right]$
λ n	non-negative weighting function of v , [1]
$\mu \quad \mathrm{n}$	non-negative weighting function of w , [1]
$\nu \quad \mathrm{n}$	non-negative weighting function of ℓ, [1]
$\sigma_{0} \quad y$	yield stress of the shell material, $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
$\eta_{0}^{2} \quad \mathrm{p}$	preselected limiting value for the maximum change in $\left(\Delta v^{2}+\Delta w^{2}\right)$ to be allowed in one iteration step, [1]
J_{1} through J	$\mathrm{J}_{7} \quad$ integrals as defined in Eqs. (3.33)
$\mathrm{I}(\epsilon), \mathrm{K}(\epsilon) \mathrm{i}$	improper integrals as defined in Eqs. (3.35) and (3.36)

3. Acknowledgment

This project was sponsored by the National Aeronautics and Space Administration, Office of Advanced Research and Technology, Applied Mathematics Branch, of which Dr. Raymond H. Wilson is Chief.

The investigation was part of the work of the Engineering Experiment Station of which Professor Ross J. Martin is Director and was conducted in the Department of Theoretical and Applied Mechanics of which Professor Thomas J. Dolan is Head, with Will J. Worley as Principal Investigator.

The authors wish to acknowledge the assistance of Charles Cecil Fretwell, formerly Instructor in Theoretical and Applied Mechanics, University of Illinois, in the early stages of the numerical programming and the assistance of undergraduate students: Messrs. Tom E. Breuer and Edward H. Stredde with various phases of the project.

The suggestion that the length variation be included as a parameter in the optimization procedure was made by Melvin G. Rosche, Space Vehicle Structures Program, NASA, Washington, D. C.

Both the ILLIAC II and the IBM 7094 computer facilities were used. The ILLIAC II was constructed in the Digital Computer Laboratory, now known as the Department of Computer Science, University of Illinois with support from the Atomic Energy Commission, grant USAEC AT(11-1)-415, and from the Office of Naval Research, grant NONOR-1832 (15). The IBM 7094 computer facility is partially supported by the National Science Foundation under grant NSF GP 700.

DISCUSSION OF THE METHOD

Otpimization with respect to enclosed volume and shell weight, for a shell of revolution defined by the meridian curve Eq. (3.1) is achieved by considering the exponents α and β as parameters.

Then the volume and weight may be expressed as

$$
\begin{align*}
& \mathrm{V}_{\mathrm{xa}}=\mathrm{V}_{\mathrm{xa}}(\alpha, \beta) \tag{3.2}\\
& \mathrm{W}=\rho \mathrm{gA}(\alpha, \beta) \mathrm{t}(\alpha, \beta) \tag{3.3}
\end{align*}
$$

where ρ is the mass density of the material of the shell, g is the gravitational acceleration, while A represents the area of the middle surface of the shell and t is the thickness. The thickness is maintained constant over the entire shell and is small compared to the radius b and to the length a.

Both the volume V_{xa} and the surface area A depend only on the geometrical shape of the shell, which is controlled by the parameters α and β for the fixed cylindrical volume. The thickness t depends on the geometrical shape of the shell, on the load condition and on the failure criteria. Therefore the mode of the failure of the shell, under a specified load condition, must be defined for the evaluation of the thickness t, before optimization can be achieved.

Let the primary design requirements, to be fulfilled for the shell, be

$$
\mathrm{V}_{\mathrm{xa}} \geq \mathrm{V}_{\min } \quad, \quad \mathrm{W} \leq \mathrm{W}_{\max }
$$

where $V_{\text {min }}$ and $W_{\text {max }}$ are preassigned limits. It is further assumed that at least one set of values (α, β) will satisfy the primary requirements. Otherwise the material of the shell, the assumed mode of failure, the load conditions, or the dimensions a and b have to be modified in order to determine an optimum shape.

To facilitate the calculations, the ratios of the volume and weight are introduced as

$$
\begin{equation*}
\mathrm{v}=\frac{\mathrm{V}_{\mathrm{xa}}}{\mathrm{~V}_{\min }} \tag{3.4}
\end{equation*}
$$

$$
\mathrm{w}=\frac{\mathrm{W}}{\mathrm{~W}_{\max }}
$$

The differential of a function is then defined as

$$
\begin{equation*}
\mathrm{dF}=\lambda \mathrm{dv}-\mu \mathrm{dw} \tag{3.5}
\end{equation*}
$$

where λ and μ are non-negative weighting functions of v and w, which define the relative importance of increasing in volume and of decreasing in weight. These weighting functions are defined in terms of current volume and weight. As long as it is possible to select $d v$ and $d w$, consistent with the constraints of the problem, such that dF is positive, one has not achieved the optimum shape. Thus one seeks the values of α and β for which the differential dF is either zero or negative.

While superior shapes may exist, the above criteria will assure an optimum shape within the limitations of Eq. (3.1) and with the imposed constraints on volume and weight.

To determine the values of α and β for which F yields the extreme value, one may write Eq. (3.5) in the form

$$
\begin{equation*}
\mathrm{dF}=\mathrm{F}_{\alpha} \mathrm{d} \alpha+\mathrm{F}_{\beta} \mathrm{d} \beta \tag{3.6}
\end{equation*}
$$

with

$$
\begin{align*}
& \mathrm{F}_{\alpha}=\lambda \mathrm{v}_{\alpha}-\mu \mathrm{w}_{\alpha} \tag{3.7}\\
& \mathrm{F}_{\boldsymbol{\beta}}=\lambda \mathrm{v}_{\boldsymbol{\beta}}-\mu \mathrm{w}_{\boldsymbol{\beta}} \tag{3.8}
\end{align*}
$$

where the subscripts α and β indicate the partial differentiation with respect to α and β.

If Eq. (3.6) is an exact differential, then in principle one need only look among the solutions of $\mathrm{F}_{\alpha}=\mathrm{F}_{\beta}=0$ for the optimum shape. Because of the complex nature of the equations for $v_{\alpha}, v_{\beta}, w_{\alpha}$ and w_{β}, it is difficult to determine whether Eq. (3.6) is exact. Even if Eq. (3.6) were exact, the analytical solution of $\mathrm{F}_{\alpha}=\mathrm{F}_{\beta}=0$ would be extremely difficult to obtain. The following iterative procedure is therefore used in the evaluation of $\mathrm{F}_{\alpha}=\mathrm{F}_{\beta}=0$.

A shape defined by a set of α and β consistent with the primary requirements is selected first. This defines the shape of the shell middle surface. Therefore, the volume and the surface area of the shell can be calculated and the required thickness computed consistent with the assumed mode failure of the shell. Once the volume and weight are computed, values of λ and μ, which were defined by the design criterion, are established. Hence the values of F_{α} and F_{β} are determined by Eqs. (3.7) and (3.8). The shape is then modified by incrementing α and β in accordance with the path of the steepest ascent

$$
\begin{equation*}
\mathrm{d} \alpha: \mathrm{d} \beta=\mathrm{F}_{\alpha}: \mathrm{F}_{\beta} \tag{3.9}
\end{equation*}
$$

The iterative procedure is repeated until F_{α} and F_{β} are both essentially zero. To determine the incremental size $\Delta \alpha$ and $\Delta \beta$ for the steps in the iteration, let a constant k be defined from Eq. (3.9) as

$$
\begin{equation*}
\frac{\Delta \alpha}{\mathrm{F}_{\alpha}}=\frac{\Delta \beta}{\mathrm{F}_{\beta}}=\mathrm{k} \tag{3.10}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& \mathrm{dv}=\mathrm{v}_{\alpha} \mathrm{d} \alpha+\mathrm{v}_{\beta} \mathrm{d} \beta=\mathrm{k}\left(\mathrm{v}_{\alpha} \mathrm{F}_{\alpha}+\mathrm{v}_{\beta} \mathrm{F}_{\beta}\right) \tag{3.11}\\
& \mathrm{dw}=\mathrm{w}_{\alpha} \mathrm{d} \alpha+\mathrm{w}_{\beta} \mathrm{d} \beta=\mathrm{k}\left(\mathrm{w}_{\alpha} \mathrm{F}_{\alpha}+\mathrm{w}_{\beta} \mathrm{F}_{\beta}\right) \tag{3,12}
\end{align*}
$$

In order to limit the size of the increments of Δv and Δw, and of $\Delta \alpha$ and $\Delta \beta$, the constant k is selected in the following way

$$
k=\left\{\begin{array}{l}
k_{1} \text { if } k_{1}<k_{0} \tag{3.13}\\
k_{0} \text { if } k_{1}>k_{0}
\end{array}\right.
$$

The constant k_{1} is determined from Eqs. (3.11) and (3.12) consistent with the assigned increments of Δv and Δw, and is evaluated as follows

$$
\eta_{o}^{2}=\Delta v^{2}+\Delta w^{2}=k_{1}^{2}\left[\left(v_{\alpha} F_{\alpha}+v_{\beta} F_{\beta}\right)^{2}+\left(w_{\alpha} F_{\alpha}+w_{\beta} F_{\beta}\right)^{2}\right]
$$

from which

$$
\begin{equation*}
\mathrm{k}_{1}=\eta_{o} /\left[\left(\mathrm{v}_{\alpha} \mathrm{F}_{\alpha}+\mathrm{v}_{\beta} \mathrm{F}_{\beta}\right)^{2}+\left(\mathrm{w}_{\alpha} \mathrm{F}_{\alpha}+\mathrm{w}_{\beta} \mathrm{F}_{\beta}\right)^{2}\right]^{1 / 2} \tag{3.14}
\end{equation*}
$$

where η_{0}^{2} is a preselected limiting value for the maximum change of ($\left.\Delta v^{2}+\Delta w^{2}\right)$ to be allowed in one iteration step, while k_{o} is a preselected limiting value for the ratio $\Delta \alpha / F_{\alpha}$ or $\Delta \beta / F_{\beta}$ for each step of iteration. The process is then repeated with a new set of values of α and β formed by adding the increments $\Delta \alpha$ and $\Delta \beta$ to the previous values. The iteration process terminates when the value $\left(\mathrm{F}_{\alpha}^{2}+\mathrm{F}_{\beta}^{2}\right)$ is less than a preassigned accuracy parameter.

The mathematical formulation of the more general problem which permits the length to vary as well as α and β is presented in Appendix A.

MATHEMATICAL FORMULATION

In the process of iteration, as described in the previous sections, the values of $\mathrm{v}, \mathrm{v}_{\alpha}, \mathrm{v}_{\beta}, \mathrm{w}, \mathrm{w}_{\alpha}$ and w_{β} for a given set of values of α and β must be calculated. From Eqs. (3.3) and (3.4), w_{α} and w_{β} may be written as

$$
\begin{align*}
& \mathrm{w}_{\alpha}=\frac{\rho \mathrm{g}}{\mathrm{~W}_{\max }}\left(\mathrm{A} \mathrm{t}_{\alpha}+\mathrm{A}_{\alpha} \mathrm{t}\right) \tag{3.15}\\
& \mathrm{w}_{\beta}=\frac{\rho \mathrm{g}}{\mathrm{~W}_{\max }}\left(\mathrm{A} \mathrm{t}_{\beta}+\mathrm{A}_{\beta} \mathrm{t}\right) \tag{3.16}
\end{align*}
$$

The symbols used in the iteration procedure, described earlier in the report, are defined by the following integrals. The notation in these integrals is consistent with that used in the previous reports under the current research grant $[1,2]$.

$$
\begin{align*}
& \mathrm{v}=\frac{2 \pi \mathrm{~b}^{2}}{\mathrm{~V}_{\min }} \int_{0}^{\mathrm{a}}\left[1-\left(\frac{\mathrm{x}}{\mathrm{a}}\right)^{\alpha}\right]^{2 / \beta} \mathrm{dx} \\
&=\frac{2 \pi \mathrm{ab}^{2}}{\mathrm{~V}_{\min }} \int_{0}^{1}\left(1-\mathrm{X}^{\alpha}\right)^{2 / \beta} \mathrm{dX} \tag{3.17}\\
& \mathrm{v}_{\alpha}=\frac{-2 \pi a b^{2}}{\mathrm{~V}_{\min }}\left(\frac{2}{\beta}\right)^{\int_{0}}\left(1-\mathrm{X}^{\alpha}\right)^{(2-\beta) / \beta} \mathrm{X}^{\alpha} \log \mathrm{X} \mathrm{dX} \tag{3.18}\\
& \mathrm{v}_{\beta}=\frac{-2 \pi a \mathrm{~V}^{2}}{\mathrm{~V}_{\min }}\left(\left.\frac{2}{\beta^{2}} \right\rvert\, \int_{0}^{1}\left(1-\mathrm{X}^{\alpha}\right)^{2 / \beta} \log \left(1-\mathrm{X}^{\alpha}\right) \mathrm{dX}\right. \tag{3.19}
\end{align*}
$$

$$
\begin{align*}
A & =4 \pi \mathrm{~b} \int_{0}^{\mathrm{a}}\left[1-\left(\frac{\mathrm{x}}{\mathrm{a}}\right)^{\alpha}\right]^{1 / \beta}\left\{1+\left(\frac{\mathrm{b} \alpha}{\mathrm{a} \beta}\right)^{2}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)^{2(\alpha-1)}\left[1-\left(\frac{\mathrm{x}}{\mathrm{a}}\right)^{\alpha}\right]^{2(1-\beta) / \beta}\right\}^{1 / 2} \mathrm{dx} \\
& =4 \pi \mathrm{ab} \int_{0}^{1}\left(1-\mathrm{X}^{\alpha}\right)^{1 / \beta}\left[1+\left(\left.\frac{\mathrm{b} \alpha}{\mathrm{a} \beta}\right|^{2} \mathrm{X}^{2(\alpha-1)}\left(1-\mathrm{X}^{\alpha}\right)^{2(1-\beta) / \beta}\right]^{1 / 2} \mathrm{dX}\right. \tag{3.20}
\end{align*}
$$

Let $\quad \mathrm{F}(\mathrm{X}, \alpha, \beta)=1+\left(\frac{\mathrm{b} \alpha}{\mathrm{a} \beta}\right)^{2} \mathrm{X}^{2(\alpha-1)}\left(1-\mathrm{X}^{\alpha}\right)^{2(1-\beta) / \beta}$
and $\quad h^{2}=\left(\frac{b \alpha}{a \beta}\right)^{2}$
then $\quad A_{\alpha}=4 \pi a b\left\{\left(\frac{h^{2}}{\alpha}\right) \int_{0}^{1} F(X, \alpha, \beta)^{-1 / 2} X^{2(\alpha-1)}\left(1-X^{\alpha}\right)^{(3-2 \beta) / \beta} d X\right.$

$$
\begin{align*}
& -\frac{1}{\beta} \int_{0}^{1} \mathrm{~F}(\mathrm{X}, \alpha, \beta)^{-1 / 2} \mathrm{X}^{\alpha}\left(1-\mathrm{X}^{\alpha}\right)^{(1-\beta) / \beta} \log \mathrm{X} \mathrm{dX} \\
& +\mathrm{h}^{2} \int_{0}^{1} \mathrm{~F}(\mathrm{X}, \alpha, \beta)^{-1 / 2} \mathrm{X}^{2(\alpha-1)}\left(1-\mathrm{X}^{\alpha}\right)^{(3-2 \beta) / \beta} \log \mathrm{XdX} \\
& \left.-\mathrm{h}^{2}\left(\frac{2-\beta}{\beta}\right) \int_{0}^{1} \mathrm{~F}(\mathrm{X}, \alpha, \beta)^{-1 / 2} \mathrm{X}^{(3 \alpha-2)}\left(1-\mathrm{X}^{\alpha}\right)^{3(1-\beta) / \beta} \log \mathrm{XdX}\right\} \tag{3.21}
\end{align*}
$$

and

$$
\begin{align*}
\mathrm{A}_{\beta} & =-4 \pi \mathrm{ab}\left\{\left(\frac{\mathrm{~h}^{2}}{\beta}\right) \int_{0}^{1} \mathrm{~F}(\mathrm{X}, \alpha, \beta)^{-1 / 2} \mathrm{X}^{2(\alpha-1)}\left(1-\mathrm{X}^{\alpha}\right)^{(3-2 \beta) / \beta} \mathrm{dX}\right. \\
& +\frac{1}{\beta^{2}} \int_{0}^{1} \mathrm{~F}(\mathrm{X}, \alpha, \beta)^{-1 / 2}\left(1-\mathrm{X}^{\alpha}\right)^{1 / \beta} \log \left(1-\mathrm{X}^{\alpha}\right) \mathrm{dX} \\
& \left.+2\left(\frac{\mathrm{~h}^{2}}{\beta^{2}}\right) \int_{0}^{1} \mathrm{~F}(\mathrm{X}, \alpha, \beta)^{-1 / 2} \mathrm{X}^{2(\alpha-1)}\left(1-\mathrm{X}^{\alpha}\right)^{(3-2 \beta) / \beta} \log \left(1-\mathrm{X}^{\alpha}\right) \mathrm{dX}\right\} \tag{3.22}
\end{align*}
$$

The next step consists of the determination of the thickness t and the values of t_{α} and t_{β}. These values should ideally be determined from a limit analysis, but since this would constitute a major undertaking in itself $[6,7]$, the following simple failure criterion is adopted. It is assumed that under a uniform internal pressure, p_{o}, the shell will fail by general yielding either along a longitudinal plane or around
the equatorial plane. If σ_{0} is the yield stress for the shell material, failure along a longitudinal plane requires a thickness given by

$$
\begin{equation*}
t_{1}=\left(\frac{p_{0}}{\sigma_{0}}\right) \frac{A_{a}}{L} \tag{3.23}
\end{equation*}
$$

while failure around the equatorial plane requires a thickness given by

$$
\begin{equation*}
\mathrm{t}_{2}=\frac{1}{2}\left(\frac{\mathrm{p}_{\mathrm{o}}}{\sigma_{\mathrm{o}}}\right) \mathrm{b} \tag{3.24}
\end{equation*}
$$

where A_{a} is the area enclosed by the first quadrant of Eq. (3.1) and L is the complete arc length in the first quadrant of Eq. (3.1). The design thickness t should be either t_{1} or t_{2}, whichever is larger. If $t_{2} \geq t_{1}$ then t equals t_{2}, a constant; therefore $\mathrm{t}_{\alpha}=\mathrm{t}_{\beta}=0$. For $\mathrm{t}_{2}<\mathrm{t}_{1}$, then by Eq. (3.23).

$$
\begin{align*}
& \mathrm{t}_{\alpha}=\frac{\mathrm{p}_{\mathrm{o}}}{\sigma_{o}}\left[\frac{\left(\mathrm{~A}_{\mathrm{a}}\right)_{\alpha}}{\mathrm{L}}-\frac{\mathrm{A}_{\mathrm{a}} \mathrm{~L}_{\alpha}}{\mathrm{L}^{2}}\right] \tag{3.25}\\
& \mathrm{t}_{\beta}=\frac{\mathrm{p}_{\mathrm{o}}}{\sigma_{o}}\left[\frac{\left(\mathrm{~A}_{\mathrm{a}}\right)_{\beta}}{\mathrm{L}}-\frac{\mathrm{A}_{\mathrm{a}} \mathrm{~L}_{\beta}}{\mathrm{L}^{2}}\right] \tag{3.26}
\end{align*}
$$

where

$$
\begin{align*}
& A_{a}=b \int_{0}^{a}\left[1-\left(\frac{x}{a}\right)^{\alpha}\right]^{1 / \beta} d x=a b \int_{0}^{1}\left(1-x^{\alpha}\right)^{1 / \beta} d X \tag{3.27}\\
& \left(A_{a}\right)_{\alpha}=\frac{\partial A_{a}}{\partial \alpha}=-\left(\frac{a b}{\beta}\right) \int_{0}^{1}\left(1-X^{\alpha}\right)^{(1-\beta) / \beta} x^{\alpha} \log X d X \tag{3.28}\\
& \left(A_{a}\right)_{\beta}=\frac{\partial A_{a}}{\partial \beta}=-\left(\frac{a b}{\beta^{2}}\right) \int_{0}^{1}\left(1-X^{\alpha}\right)^{1 / \beta} \log \left(1-X^{\alpha}\right) d X \tag{3.29}
\end{align*}
$$

$$
\begin{align*}
\mathrm{L} & =\int_{0}^{\mathrm{a}}\left\{1+\left(\frac{\mathrm{b} \alpha}{\mathrm{a} \beta}\right)^{2}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)^{2(\alpha-1)}\left[1-\left(\frac{\mathrm{x}}{\mathrm{a}}\right)^{\alpha}\right]^{2(1-\beta) / \beta}\right\}^{1 / 2} \mathrm{dX} \\
& =\mathrm{a} \int_{0}^{1} \mathrm{~F}(\mathrm{X}, \alpha, \beta)^{1 / 2} \mathrm{dX} \tag{3.30}\\
\mathrm{~L}_{\alpha} & =\mathrm{a}\left\{\frac{\mathrm{~h}^{2}}{\alpha} \int_{0}^{1} \mathrm{~F}(\mathrm{X}, \alpha, \beta)^{-1 / 2} \mathrm{X}^{2(\alpha-1)}\left(1-\mathrm{X}^{\alpha}\right)^{2(1-\beta) / \beta} \mathrm{dX}\right. \\
& +\mathrm{h}^{2} \int_{0}^{1} \mathrm{~F}(\mathrm{X}, \alpha, \beta)^{-1 / 2} \mathrm{X}^{2(\alpha-1)}\left(1-\mathrm{X}^{\alpha}\right)^{(2-3 \beta) / \beta} \log \mathrm{XdX} \\
& \left.-\frac{\mathrm{h}^{2}}{\beta} \int_{0}^{1} \mathrm{~F}(\mathrm{X}, \alpha, \beta)^{-1 / 2} \mathrm{X}^{3 \alpha-2}\left(1-\mathrm{X}^{\alpha}\right)^{(2-3 \beta) \beta} \log \mathrm{XdX}\right\} \tag{3.31}\\
\mathrm{L}_{\beta} & =\mathrm{a}\left\{-\frac{\mathrm{h}^{2}}{\beta} \int_{0}^{1} \mathrm{~F}(\mathrm{X}, \alpha, \beta)^{-1 / 2} \mathrm{X}^{2(\alpha-1)}\left(1-\mathrm{X}^{\alpha}\right)^{2(1-\beta) / \beta \mathrm{dX}}\right. \\
& \left.-\frac{\mathrm{h}^{2}}{\beta^{2}} \int_{0}^{1} \mathrm{~F}(\mathrm{X}, \alpha, \beta)^{-1 / 2} \mathrm{X}^{2(\alpha-1)}\left(1-\mathrm{X}^{\alpha}\right)^{2(1-\beta) / \beta} \log \left(1-\mathrm{X}^{\alpha}\right) \mathrm{dX}\right\} \tag{3.32}
\end{align*}
$$

All of the integrals which appear in the above equations may be collected into seven groups, by defining the following convergent but sometimes improper integrals in notations as

$$
\begin{aligned}
& J_{1}(p, q)=\int_{0}^{1}\left(1-u^{p}\right)^{q} d u \\
& J_{2}(p, q)=\int_{0}^{1}\left(1-u^{p}\right)^{q} \log \left(1-u^{p}\right) d u
\end{aligned}
$$

$$
\left.\begin{array}{l}
J_{3}(p, q)=\int_{0}^{1}\left(1-u^{p}\right)^{q-1} u^{p} \log u d u \\
J_{4}(p, q, s)=\int_{0}^{1}\left(1-u^{p}\right)^{s}\left[1+h^{2} u^{2(p-1)}\left(1-u^{p}\right)^{2(q-1)}\right]^{1 / 2} d u \\
J_{5}(p, q, s)=\int_{0}^{1}\left[1+h^{2} u^{2(p-1)}\left(1-u^{p}\right)^{2(q-1)}\right]^{-1 / 2} u^{2(p-1)}\left(1-u^{p}\right)^{s-2} d u \\
J_{6}(p, q, r, s)=\int_{0}^{1}\left[1+h^{2} u^{2(p-1)}\left(1-u^{p}\right)^{2(q-1)}\right]^{-1 / 2} u^{2(r-1)}\left(1-u^{p}\right)^{s-2} \\
\log \left(1-u^{p}\right) d u \\
J_{7}(p, q, s, m)=\int_{0}^{1}\left[1+h^{2} u^{2(p-1)}\left(1-u^{p}\right)^{2(q-1)}\right]^{-1 / 2} u^{m}\left(1-u^{p}\right)^{s-3} \log u d u
\end{array}\right]
$$

Then the equations used in the calculation of v, w and their derivatives can be expressed by Eqs. (3.33) as

$$
\begin{aligned}
& \mathrm{v}=\frac{2 \pi a b^{2}}{\mathrm{~V}_{\min }} \mathrm{J}_{1}\left(\alpha, \frac{2}{\beta}\right) \\
& \mathrm{v}_{\alpha}=-\frac{2 \pi a b^{2}}{\mathrm{~V}_{\min }}\left(\frac{2}{\beta}\right) \mathrm{J}_{3}\left(\alpha, \frac{2}{\beta}\right) \\
& \mathrm{v}_{\beta}=-\frac{2 \pi a b^{2}}{\mathrm{~V}_{\min }}\left(\frac{2}{\beta^{2}}\right) \mathrm{J}_{2}\left(\alpha, \frac{2}{\beta}\right)
\end{aligned}
$$

$$
\begin{align*}
& A=4 \pi a b J_{4}\left(\alpha, \frac{1}{\beta}, \frac{1}{\beta}\right) \\
& A_{\alpha}=4 \pi a b\left[\frac{h^{2}}{\alpha} \mathrm{~J}_{5}\left(\alpha, \frac{1}{\beta}, \frac{3}{\beta}\right)-\frac{1}{\beta} \mathrm{~J}_{7}\left(\alpha, \frac{1}{\beta}, \frac{1}{\beta}+2, \alpha\right)\right. \\
& \left.+\mathrm{h}^{2} \mathrm{~J}_{7}\left(\alpha, \frac{1}{\beta}, \frac{3}{\beta}+1,2 \alpha-2\right)-\mathrm{h}^{2}\left(\frac{2}{\beta}-1\right) \mathrm{J}_{7}\left(\alpha, \frac{1}{\beta}, \frac{3}{\beta}, 3 \alpha-2\right)\right] \\
& A_{\beta}=-4 \pi a b\left[\frac{h^{2}}{\beta} \mathrm{~J}_{5}\left(\alpha, \frac{1}{\beta}, \frac{3}{\beta}\right)+\frac{1}{\beta^{2}} \mathrm{~J}_{6}\left(\alpha, \frac{1}{\beta}, 1, \frac{1}{\beta}+2\right)\right. \\
& \left.+2\left(\frac{\mathrm{~h}}{\bar{\beta}}\right)^{2} \mathrm{~J}_{6}\left(\alpha, \frac{1}{\bar{\beta}}, \alpha, \frac{3}{\beta}\right)\right] \tag{3.34}\\
& A_{a}=a b J_{1}\left(\alpha, \frac{1}{\beta}\right) \\
& \left(A_{a}\right)_{\alpha}=a b\left(-\frac{1}{\beta}\right) J_{3}\left(\alpha, \frac{1}{\beta}\right) \\
& \left(A_{a}\right)_{\beta}=a b\left(-\frac{1}{\beta^{2}}\right) \quad J_{2}\left(\alpha, \frac{1}{\beta}\right) \\
& \mathrm{L}=\mathrm{a} \mathrm{~J}_{4}\left(\alpha, \frac{1}{\bar{\beta}}, 0\right) \\
& \mathrm{L}_{\alpha}=\mathrm{a}\left[\frac{\mathrm{~h}^{2}}{\alpha} \mathrm{~J}_{5}\left(\alpha, \frac{1}{\beta}, \frac{2}{\beta}\right)+\mathrm{h}^{2} \mathrm{~J}_{7}\left(\alpha, \frac{1}{\beta}, \frac{2}{\beta}, 2 \alpha-2\right)\right. \\
& \left.-\frac{\mathrm{h}^{2}}{\beta} \mathrm{~J}_{7}\left(\alpha, \frac{1}{\beta}, \frac{2}{\beta}, 3 \alpha-2\right)\right] \\
& \mathrm{L}_{\beta}=-\mathrm{a}\left[\frac{\mathrm{~h}^{2}}{\beta} \mathrm{~J}_{5}\left(\alpha, \frac{1}{\beta}, \frac{2}{\beta}\right)+\frac{\mathrm{h}^{2}}{\beta^{2}} \mathrm{~J}_{6}\left(\alpha, \frac{1}{\bar{\beta}}, \alpha, \frac{2}{\beta}\right)\right]
\end{align*}
$$

The analytical expressions for the integrals in Eqs.(3.33) are not available except for J_{1}, J_{2} and J_{3} which may be expressed in terms of gamma functions and the derivatives of gamma functions, the psi functions. Since the above functions also involve series expansions or numerical integration, all of the integrals in Eqs.(3.33) are evaluated numerically using Simpson's Rule. In this process, special consideration is given to improper integrals of the following two types.

$$
\begin{array}{ll}
\mathrm{I}(\epsilon)=\int_{0}^{\epsilon} \mathrm{f}(\xi) \xi^{\delta} \mathrm{d} \xi & \delta>-1 \\
\mathrm{~K}(\epsilon)=\int_{0}^{\epsilon} \mathrm{f}(\xi) \xi^{\delta} \log \xi \mathrm{d} \xi & \delta>-1 \tag{3.36}
\end{array}
$$

with $f(\xi)$ continuous in the interval $0 \leq \xi \leq \epsilon$. For ϵ small enough, replace $f(\xi)$ with a parabola

$$
\begin{equation*}
\mathrm{f}(\xi)=\mathrm{b}_{\mathrm{o}}+\mathrm{b}_{1}\left|\frac{\xi}{\epsilon}\right|+\mathrm{b}_{2}\left|\frac{\xi}{\epsilon}\right|^{2} \tag{3.37}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{o}}=\mathrm{f}(0) \\
& \mathrm{b}_{1}=4 \mathrm{f}\left(\frac{\epsilon}{2}\right)-\mathrm{f}(\epsilon)-3 \mathrm{f}(0) \\
& \mathrm{b}_{2}=2 \mathrm{f}(\epsilon)-4 \mathrm{f}\left(\frac{\epsilon}{2}\right)+2 \mathrm{f}(0)
\end{aligned}
$$

Then the improper integrals $\mathrm{I}(\epsilon)$ and $\mathrm{K}(\epsilon)$ can be approximated as

$$
\begin{align*}
I(\epsilon) & =\int_{0}^{\epsilon}\left[b_{0}+b_{1}\left(\frac{\xi}{\epsilon}\right)+b_{2}\left(\frac{\xi}{\epsilon}\right)^{2}\right] \xi^{\delta} d \xi \\
& =\frac{\epsilon^{\delta+1}}{\delta+1}\left[b_{0}+\frac{\delta+1}{\delta+2} b_{1}+\frac{\delta+1}{\delta+3} b_{2}\right] \tag{3.38}
\end{align*}
$$

$$
\begin{align*}
\mathrm{K}(\epsilon) & =\int_{0}^{\epsilon}\left[\mathrm{b}_{\mathrm{o}}+\mathrm{b}_{1}\left(\frac{\xi}{\epsilon}\right)+\mathrm{b}_{2}\left(\frac{\xi}{\epsilon}\right)^{2}\right] \xi^{\delta} \log \xi \mathrm{d} \xi \\
& =\frac{\epsilon^{\delta+1}}{\delta+1}\left\{\log \epsilon\left[\mathrm{~b}_{\mathrm{o}}+\frac{\delta+1}{\delta+2} \mathrm{~b}_{1}+\frac{\delta+1}{\delta+3} \mathrm{~b}_{2}\right]-\frac{1}{\delta+1}\left[\mathrm{~b}_{\mathrm{o}}+\left(\left.\frac{\delta+1}{\delta+2}\right|^{2} \mathrm{~b}_{1}+\left(\frac{\delta+1}{\delta+3}\right)^{2} \mathrm{~b}_{2}\right]\right\}\right. \tag{3.39}
\end{align*}
$$

Therefore the improper integrals J_{2} to J_{7} listed in Eqs.(3.33) can be expressed in terms of $\mathrm{I}(\epsilon), \mathrm{K}(\epsilon)$ and a proper integral. They are derived as follows.

$$
J_{2}(p, q)=\int_{0}^{1-\eta}\left(1-u^{p}\right)^{q} \log \left(1-u^{p}\right) d u+\int_{1-\eta}^{1}\left(1-u^{p}\right)^{q} \log \left(1-u^{p}\right) d u
$$

Let $\quad \xi=1-u^{p}$
then

$$
d u=-\frac{1}{p}(1-\xi)^{(1-p) / p} d \xi
$$

and

$$
J_{2}(p, q)=\int_{0}^{1-\eta}\left(1-u^{p}\right)^{q} \log \left(1-u^{p}\right) d u+\frac{1}{p} \int_{0}^{1-(1-\eta)^{p}}(1-\xi)^{(1-p) / p} \xi^{q} \log \xi d \xi
$$

Using Eq. (3.39) along with the definitions of Eq. (3.37), J_{2} is approximated as

$$
\begin{equation*}
J_{2}(p, q)=\int_{0}^{l-\eta}\left(1-u^{p}\right)^{q} \log \left(1-u^{p}\right) d u+\left.\frac{1}{p} K(\epsilon)\right|_{\substack{* \\ \epsilon(\xi)=(1-\xi)^{(1-p) / p} \\ \\ \delta=q}} \tag{3.40}
\end{equation*}
$$

In a similar manner, by the approximations of $I(\epsilon)$ and $K(\epsilon)$, other integrals yield;

$$
\begin{aligned}
J_{3}(p, q) & =\int_{\epsilon}^{1-\eta}\left(1-u^{p}\right)^{q-1} u^{p} \log u d u \\
& +\frac{1}{p^{2}} I(\epsilon)\left|\begin{array}{l}
\epsilon=1-(1-\eta)^{p} \\
f(\xi)=(1-\xi)^{1 / p} \log (1-\xi) \\
\delta=q-1
\end{array}\right| \begin{array}{l}
\epsilon=\epsilon \\
f(\xi)=\left(1-\xi^{p}\right)^{q-1} \\
\delta=p
\end{array}
\end{aligned}
$$

*This notation indicates that the integral is evaluated at the indicated values of $\epsilon, f(\xi)$ and δ.

$$
\begin{align*}
& J_{4}(p, q, s)=\int_{0}^{1-\eta}\left(1-u^{p}\right)^{s}\left[1+h^{2} u^{2(p-1)}\left(1-u^{p}\right)^{2(q-1)}\right]^{1 / 2} d u \\
& +\frac{h}{p} I(\epsilon) \left\lvert\, \begin{array}{l}
\epsilon=1-(1-\eta)^{p} \\
f(\xi)=\left[\frac{1}{h^{2}}(1-\xi)^{2(1-p) / p^{2}} \xi^{2(1-q)}+1\right]^{1 / 2} \\
\delta=q+s-1
\end{array}\right. \\
& J_{5}(p, q, s)=\int_{0}^{1-\eta}\left[1+h^{2} u^{2(p-1)}\left(1-u^{p}\right)^{2(q-1)}\right]^{-1 / 2} u^{2(p-1)}\left(1-u^{p}\right)^{s-2} d u \tag{3.41}\\
& +\frac{1}{\mathrm{p}} \mathrm{I}(\epsilon) \left\lvert\, \begin{array}{l}
\epsilon=1-(1-\eta)^{p} \\
\mathrm{f}(\xi)=\left[\xi^{2(1-q)}+\mathrm{h}^{2}(1-\xi)^{2(p-1) / \mathrm{p}}\right]^{-1 / 2}(1-\xi)^{(p-1) / \mathrm{p}} \\
\delta=\mathrm{s}-\mathrm{q}-1
\end{array}\right. \\
& J_{6}(p, q, r, s)=\int_{0}^{1-\eta}\left[1+h^{2} u^{2(p-1)}\left(1-u^{p}\right)^{2(q-1)}\right]^{-1 / 2} u^{2(r-1)}\left(1-u^{p}\right)^{s-2} \\
& \log \left(1-u^{p}\right) d u \\
& +\frac{1}{\mathrm{p}} \mathrm{~K}(\epsilon)\left|\begin{array}{l}
\epsilon=1-(1-\eta)^{\mathrm{p}} \\
\mathrm{f}(\xi)=\left[\xi^{2(1-q)}+\mathrm{h}^{2}(1-\xi)^{2(\mathrm{p}-1) / \mathrm{p}}\right]^{-1 / 2} \cdot(1-\xi)^{(2 r-p-1) / \mathrm{p}} \\
\delta=\mathrm{s}-\mathrm{q}-1
\end{array}\right|
\end{align*}
$$

$$
\begin{aligned}
J_{7}(p, q, s, m) & =\int_{\epsilon}^{1-\eta}\left[1+h^{2} u^{2(p-1)}\left(1-u^{p}\right)^{2(q-1)}\right]^{-1 / 2}\left(1-u^{p}\right)^{s-3} u^{m} \log u d u \\
& +\left.K(\epsilon)\right|_{\epsilon=\epsilon} ^{\epsilon} \begin{array}{l}
f(\xi)=\left[\left(1-\xi^{p}\right)^{2(1-q)}+h^{2} \xi^{2(p-1)}\right]^{-1 / 2}\left(1-\xi^{p}\right)^{s-q-2} \\
\delta=m
\end{array} \\
& +\left.\frac{1}{p^{2}} \mathrm{I}(\epsilon)\right|_{\epsilon=1-(1-\eta)^{p}}
\end{aligned}
$$

The integrals J_{1} to J_{7} therefore involve only proper integrals; thus numerical integration by Simpson's rule can be applied. The FORTRAN programs for the evaluation of J_{1} through J_{7} by means of a digital computer are written in subfunction form as listed in Appendix B.

NUMERICAL COMPUTATIONS

Several characteristics of the design problem have to be defined before the numerical iterations can be performed. One is the magnitude of the required values for $\mathrm{V}_{\min }$ and $\mathrm{W}_{\text {max }}$ the others include the weighting functions λ and μ.

1. The Ranges of the Volumes and Weights of Shells

Among the shells of revolution which may be generated by revolving the meridian curve, Eq. (3.1), about the x -axis, the range of shapes of interest lie between the cylindrical shell for which the exponents α and β are both large, and the conical shell for which the exponents α and β both equal unity. The volume of the cylinder with radius b and length $2 a$ is $V_{c y l}=2 \pi a^{2}$, and the volume of the double cone, having apexes at -a and at +a , with corresponding base diameter, 2 b , is $\mathrm{V}_{\text {cone }}=\frac{2}{3} \pi a \mathrm{~b}^{2}$. If the required minimum volume $\mathrm{V}_{\min }$ is written as $\mathrm{V}_{\min }=\mathrm{C}_{1}\left(2 \pi a b^{2}\right)$, then C_{1} must lie between $1 / 3$ and 1 .

In order to determine the weight for the two limiting cases, the thickness variation must be considered as well as the surface area. The surface areas for the cylindrical and conical shells are

$$
\begin{aligned}
& A_{\text {cyl }}=4 \pi a b\left[1+\frac{1}{2}\left(\frac{b}{a}\right)\right] \\
& A_{\text {cone }}=4 \pi a b\left[\frac{1}{2} \sqrt{1+\left(\frac{b}{a}\right)^{2}}\right]
\end{aligned}
$$

Using Eqs. (3.23) and (3.24), the thicknesses required for the shell of cylindrical type, based on two different failure criteria, are expressed as

$$
\begin{aligned}
& \mathrm{t}_{1}=\frac{1}{1+\left(\frac{\mathrm{b}}{\mathrm{a}}\right)}\left(\frac{\mathrm{p}_{\mathrm{o}}}{\sigma_{\mathrm{o}}}\right) \mathrm{b} \\
& \mathrm{t}_{2}=\frac{1}{2}\left(\frac{\mathrm{p}_{\mathrm{o}}}{\sigma_{\mathrm{o}}}\right) \mathrm{b}
\end{aligned}
$$

therefore

$$
t=\left\{\begin{array}{ll}
\frac{1}{2}\left(\frac{p_{0}}{\sigma_{o}}\right)_{b} & \text { for }\left(\frac{b}{a}\right) \geq 1 \\
\frac{1}{1+\left(\frac{b}{a}\right)}\left(\frac{p_{0}}{\sigma_{0}}\right) b & \text { for }\left(\frac{b}{a}\right)<1
\end{array}\right\}
$$

Similarly, the thicknesses required for the conical type shell are

$$
\begin{aligned}
& \mathrm{t}_{1}=\frac{1}{2} \frac{1}{\sqrt{1+\left(\frac{\mathrm{b}}{\mathrm{a}}\right)^{2}}}\left(\frac{\mathrm{p}_{\mathrm{o}}}{\sigma_{\mathrm{o}}}\right) \mathrm{b} \\
& \mathrm{t}_{2}=\frac{1}{2}\left(\frac{\mathrm{p}_{\mathrm{o}}}{\sigma_{\mathrm{o}}}\right) \mathrm{b}
\end{aligned}
$$

Since $\frac{1}{\sqrt{1+\left(\frac{b}{a}\right)^{2}}} \leq 1$ for any value of $\left(\frac{b}{a}\right)$, it follows that

$$
\mathrm{t}=\frac{1}{2}\left(\frac{\mathrm{p}_{\mathrm{o}}}{\sigma_{\mathrm{o}}}\right) \mathrm{b} \quad \text { for any ratio }\left(\frac{\mathrm{b}}{\mathrm{a}}\right)
$$

Then the weights of the cylindrical and the conical shells become

$$
\left.\begin{array}{l}
W_{c y l}=\left\{\begin{array}{ll}
\frac{1}{2}\left[1+\frac{1}{2}\left(\frac{b}{a}\right)\right]\left[4 \pi a^{2}\left(\frac{p_{0}}{\sigma_{0}}\right) \rho g\right] & \text { for } \frac{b}{a} \geq 1 \\
\frac{1}{1+\left(\frac{b}{a}\right)} & {\left[1+\frac{1}{2}\left(\frac{b}{a}\right)\right]\left[4 \pi a b^{2}\left(\frac{p_{0}}{\sigma_{0}}\right) \rho g\right]}
\end{array}\right\} \text { for } \frac{b}{a}<1 \tag{3.42}
\end{array}\right\}
$$

By writing the primary required limiting weight as

$$
\mathrm{W}_{\max }=\mathrm{C}_{2}\left[4 \pi \mathrm{ab}^{2}\left(\frac{\mathrm{p}_{\mathrm{o}}}{\sigma_{\mathrm{o}}}\right) \rho \mathrm{g}\right]
$$

then C_{2} has to be in the range

$$
\begin{aligned}
& \frac{1}{4} \sqrt{1+\left(\frac{b}{a}\right)^{2}} \leq \mathrm{C}_{2} \leq \frac{1}{2}\left[1+\frac{1}{2}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)\right] \text { for }\left(\frac{\mathrm{b}}{\mathrm{a}}\right) \geq 1 \\
& \frac{1}{4} \sqrt{1+\left(\frac{\mathrm{b}}{\mathrm{a}}\right)^{2}} \leq \mathrm{C}_{2} \leq \frac{1}{1+\left(\frac{b}{a}\right)}\left[1+\frac{1}{2}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)\right] \text { for }\left(\frac{\mathrm{b}}{\mathrm{a}}\right)<1
\end{aligned}
$$

2. Weighting Functions λ and μ

The functions λ and μ which define the relative importance of the variation of the volume and the weight of the shells, are preassigned according to the design criterion. Any functions in terms of V and W can be assigned in the problem. One such set of functions is defined as

$$
\begin{equation*}
\lambda_{1}=\frac{\left(V_{\mathrm{cyl}}-\mathrm{V}\right)^{\mathrm{p}}}{\left(\mathrm{~V}-\mathrm{V}_{\min }\right)^{\mathrm{q}}}, \quad \mu_{1}=\frac{\mathrm{w}^{\mathrm{m}}}{\left(\mathrm{~W}_{\max }-\mathrm{W}\right)^{\mathrm{n}}} \tag{3.43}
\end{equation*}
$$

The shapes of the functions in Eq. (3.43) appear in Fig. 1, for $\mathrm{p}=\mathrm{q}=\mathrm{m}=\mathrm{n}=1$. From the characteristics of the functions λ and μ, one can predict that when the volume is close to $\mathrm{V}_{\min }$ or when the weight is close to $\mathrm{W}_{\text {max }}$, a small increment of V or W will produce a large change of dF as defined in Eq. (3.6). If dF is considered as the slope of a surface F , then the surface has a positive slope along the edge where V is close to $\mathrm{V}_{\text {min }}$ and has a negative slope along the edge where W is close to $\mathrm{W}_{\max }$. Thus it follows that there must exist a maximum value of F , that is $\mathrm{dF}=0$, in the assigned range $\mathrm{V}>\mathrm{V}_{\min }$ and $\mathrm{W}<\mathrm{W}_{\max }$.

The functions λ and μ may also be defined as

$$
\begin{equation*}
\lambda_{2}=\frac{\lambda_{1}}{\sqrt{\lambda_{1}^{2}+\mu_{1}^{2}}} \tag{3.44}
\end{equation*}
$$

$$
\mu_{2}=\frac{\mu_{1}}{\sqrt{\lambda_{1}^{2}+\mu_{1}^{2}}}
$$

where λ_{1} and μ_{1} are obtained from Eq. (3.43). If one divides λ_{1} and μ_{1} by $\sqrt{\lambda_{1}^{2}+\mu_{1}^{2}}$, the magnitude of λ_{2} and μ_{2} will be limited to the range of 0 to 1 . The ratios λ_{2} / μ_{2} and λ_{1} / μ_{1}, remain the same. The characteristics of the functions are as shown in Fig. 2; the values of λ_{2} and μ_{2} outside the range of $V_{\min }$ and $W_{\text {max }}$ are arbitrary set equal to 0 and to 1 respectively.

Another form of λ and μ consists of straight lines, which define a linear variation of V and W as

$$
\begin{equation*}
\lambda_{3}=\frac{V_{c y l}-V}{V_{c y l}-V_{\min }} \quad \mu_{3}=\frac{W}{W_{\max }} \tag{3.45}
\end{equation*}
$$

The above three definitions of λ and μ are applied in the numerical examples of this report. Subroutine programs for the calculation of λ and μ are attached to the main iteration program as listed in Appendix B.

3. Numerical Examples

The functions of λ and μ for the first example are chosen as in Fig. 1, that is

$$
\lambda=\frac{\mathrm{V}_{\mathrm{cyl}}-\mathrm{V}}{\mathrm{~V}-\mathrm{V}_{\min }}, \quad \quad \mu=\frac{\mathrm{W}}{\mathrm{~W}_{\max }-\mathrm{W}}
$$

Let the required minimum volume of the shell be 0.6 of the volume of cylindrical shell, thus $\mathrm{V}_{\min }=0.6\left(2 \pi \mathrm{ab}^{2}\right)$, and let the required maximum weight be 0.8 that of the cylindrical shell under the same load condition. Since the thickness required for the cylindrical shell is dependent on the ratio of b / a, the weights for the cylindrical shells with different ratios b / a are given by Eq. (3.42) as

$$
W_{c y l}=\left\{\begin{array}{l}
0.75 \\
1.00 \\
0.90
\end{array}\right\} \quad\left(4 \pi \rho g p_{0} \mathrm{ab}^{2} / \sigma_{o}\right) \quad \begin{aligned}
& \text { for } b / a=1.0 \\
& \text { for } b / a=2.0 \\
&
\end{aligned}
$$

therefore the values of $W_{\max }$ are chosen as $0.6\left(4 \pi \rho g p_{o} \mathrm{ab}^{2} / \sigma_{\mathrm{o}}\right), 0.8\left(4 \pi \rho g \mathrm{p}_{\mathrm{o}} \mathrm{ab}^{2} / \sigma_{\mathrm{o}}\right)$ and $0.72\left(4 \pi \rho g p_{o} a b^{2} / \sigma_{o}\right)$ for the ratios $b / a=1.0,2.0$, and 0.25 respectively.

With all the requirements set, the iterative calculations are performed with the aid of digital computers. The FORTRAN programs for the iteration procedure are listed in Appendix B.

Choosing the starting values $\alpha=1.5, \beta=1.5$ with the fineness ratio $a / b=1.0$, and the limiting value $\eta_{0}=0.1, k_{o}=0.3$, results in the output listed in Table I. From steps 1 to 7 in the Table, the results listed are presented for each iteration; from step 8 on, the results are presented for every other iteration. From these results it is seen that the values of α and β increase rapidly in each of the first six iterations and then change slowly. The same pattern is apparent for the slopes F_{α} and F_{β}.

Table II shows the iteration results with the same parameters as in Table I, but with the starting condition $\alpha=2.0, \beta=3.0$. The results in steps 1 to 8 are listed for each iteration while after step 8 , they are listed for every fourth iteration. The iterated values of α and β decrease rapidly in the first three steps and then change slowly.

The results in Tables I and II, indicate that the shape defined by $\alpha=1.5$, $\beta=1.5$ lies on one side of the ridge, Fig. 3, while the shape defined by $\alpha=2,0, \beta=3.0$ lies on the other side of the ridge. During the iteration process, the successively improving values of α and β climb to the ridge rapidly according to the path of steepest ascent, and then progress slowly along the ridge due to the small variation of slope along the ridge.

The phenomena observed in the above results may be verified or described more clearly by the exact integration of the function dF of Eq. (3.6) using the assigned functions λ and μ. Rewriting the weighting functions λ and μ in dimensionless terms v and w, one obtains

$$
\lambda=\frac{\mathrm{c}-\mathrm{v}}{\mathrm{v}-\mathrm{l}} \quad \mu=\frac{\mathrm{w}}{\mathrm{l}-\mathrm{w}}
$$

where

$$
\mathrm{c}=\frac{\mathrm{V}_{\mathrm{cyl}}}{\mathrm{~V}_{\mathrm{min}}}
$$

Then

$$
\mathrm{dF}=\frac{\mathrm{c}-\mathrm{v}}{\mathrm{v}-\mathrm{l}} \mathrm{dv}-\frac{\mathrm{w}}{1-\mathrm{w}} \mathrm{dw}
$$

which, after integration, yields

$$
F=(c-1) \log (v-1)+\log (1-w)-(v+w)
$$

The function F is in terms of v and w, which can be represented by the integrals with parameters α and β. The relative variation of F with respect to α and β is plotted as a three dimensional surface in Fig. 3. The surface has the shape of a mountain range with the projection of the ridge shown in the $\alpha-\beta$ plane in Fig. 3. The peak of the ridge is located near the point $\alpha=2.65, \beta=1.55$.

Changing the values of $V_{\min }, W_{\max }$ and the reciprocal of fineness ratio, b / a, results in little change in the shape of the surface F , but does produce a slight shift in the location of the ridge. The projections of the ridges on the $\alpha-\beta$ plane, with different combinations of $V_{\min }, W_{\max }$, and b / a, are plotted in Fig. 4. The shift in the ridge is in the same sense as the change in $\mathrm{V}_{\min }$ or in $W_{\text {max }}$.

The results in Tables III and IV show the iterative calculations for the case $V_{\min }=0.6\left(2 \pi \mathrm{ab}^{2}\right), \mathrm{W}_{\max }=0.8\left(4 \pi \rho \mathrm{~g} \mathrm{p} \mathrm{p}_{\mathrm{ob}}{ }^{2} / \sigma_{\mathrm{o}}\right)$ with the ratio $\mathrm{b} / \mathrm{a}=2.0$ and $k_{o}=0.3$. While the initial values for α and β are different in Tables III and IV, it is noted that they converge to the same values of α and β after successive iterations.

As a second example, λ_{2} and μ_{2} of Fig. 2 are chosen as the weighting functions. The results of each iterated calculation with three different starting values are listed in Table V. The preassigned values for computations are $\mathrm{V}_{\min }=0.6\left(2 \pi \mathrm{ab}^{2}\right), \mathrm{W}_{\max }=0.6\left(4 \pi \rho \mathrm{~g}_{\mathrm{o}} \mathrm{ab}^{2} / \sigma_{\mathrm{o}}\right)$ and $\mathrm{b} / \mathrm{a}=1.0$. The values
of α and β reach the ridge rapidly after several iterations regardless of the starting point.

Table VI gives the iterated results for the weighting functions λ_{3} and μ_{3}, which vary linearly with V and W, as defined by Eq. (3.45). The other preassigned values for computations are the same as for Table V . The results indicate that both the slopes F_{α} and F_{β} are within the limit 0.005 after ten iterations for all of the different starting values.

Since the iteration procedure is controlled by the slope of the function F, the rate of convergence is mainly dependent on the weighting functions λ and $\mu_{\text {。 }}$ For the currently assigned functions, the results in the above tables indicate that the values α and β converge rapidly to the region where the ordered pair (α, β) lies near the projection of the ridge and then change slowly along the ridge. Due to the small variation of the slope along the ridge, any point located on the projection of the ridge on the $\alpha-\beta$ plane constitutes a good shape with respect to volume and weight.

As another example, the functions λ and μ may be considered as constants. In this case, the problem becomes one of determining the relative maximum of the function $F=v-w$. Since the variation of the thickness is very small due to the change of values α, β, a shape which is nearly optimum may be achieved by assigning a specific value of volume in determining the values of α, β for minimum shell surface or by assigning a specific value of surface area in determining the values of α, β for maximum volume.

The shapes to fulfill the above requirement can be determined with the aid of data from previous reports $[1,2]$. The surface in Fig. 5 represents the volume variation with respect to α and β. The heavy curve on this surface represents the volumes of shells for which the surface area is equal to a preassigned value. From the projection of this curve on a vertical plane, the values of α and β for the maximum volume for the defined surface area can be established. In a similar manner, the surface in Fig. 6 represents the area variation with respect to α and β. The heavy curve on the surface represents the areas of shells for which the shell volume is equal to a preassigned value. The projection of this curve on a vertical plane indicates the area variation among shells having a constant volume.

APPENDIXES

A. Iteration Procedures with Varying Shell Length

Similar to the Eqs. (3.2) and (3.3), the volume and weight of the shells of revolution may be taken as the functions of three parameters $\alpha, \boldsymbol{\beta}$ and a,

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{xa}}=\mathrm{V}_{\mathrm{xa}}(\alpha, \beta, a) \\
& \mathrm{W}=\rho \mathrm{gA}(\alpha, \beta, a) \mathrm{t}(\alpha, \beta, a)
\end{aligned}
$$

Here the shape requirements to be fulfilled for the shell are

$$
\mathrm{V}_{\mathrm{xa}} \geq \mathrm{V}_{\min } \quad \mathrm{W} \leq \mathrm{W}_{\max } \quad \mathrm{a} \leq \mathrm{a}_{\max }
$$

In this case the dimensionless forms are defined as

$$
\mathrm{v}=\frac{\mathrm{V}_{\mathrm{xa}}}{\mathrm{~V}_{\min }} \quad \mathrm{w}=\frac{\mathrm{W}}{\mathrm{~W}_{\max }} \quad \ell=\frac{\mathrm{a}}{\mathrm{a}_{\max }}
$$

and the differential of a function is formed as

$$
\mathrm{dF}=\lambda \mathrm{dv}-u \mathrm{~d} \mathrm{w}-v \mathrm{~d} \ell
$$

where λ, μ and v are the functions defining the relative importance of increases in volume and decreases in weight and length. The differential dF also can be written as

$$
\mathrm{dF}=\mathrm{F}_{\alpha} \mathrm{d} \alpha+\mathrm{F}_{\beta} \mathrm{d} \beta+\mathrm{F}_{\ell} \mathrm{d} \ell
$$

with

$$
\begin{aligned}
& \mathrm{F}_{\alpha}=\lambda \mathrm{v}_{\alpha}-\mu \mathrm{w}_{\alpha} \\
& \mathrm{F}_{\beta}=\lambda \mathrm{v}_{\beta}-\mu \mathrm{w}_{\beta} \\
& \mathrm{F}_{\ell}=\lambda \mathrm{v}_{\ell}-\mu \mathrm{w}_{\ell}-v
\end{aligned}
$$

The iteration steps will then follow path of steepest ascent, as defined by

$$
\mathrm{d} \alpha: \mathrm{d} \beta: \mathrm{d} \ell=\mathrm{F}_{\alpha}: \mathrm{F}_{\beta}: \mathrm{F}_{\ell}
$$

The iterative procedure is repeated until $\mathrm{F}_{\alpha}, \mathrm{F}_{\beta}$ and F_{ℓ} are essentially zero.

B. FORTRAN Programs

1. Programs for FUNCTIONS FJl through FJ7

Since the integrals J_{1} through J_{7} listed in Eqs. (3.33) appear in the calculations of the main iteration program many times, they are computed in separate FUNCTIONS attached to the main program. Simpson's rule is used to evaluate the above integrals with the approximation techniques discussed in the section on Numerical Integration.

Among the input arguments for the FUNCTION programs, the values P, Q, R, S and T are the exponents in the integrals. They are dependent on the values of α and β. The quantities ETAI and EPS are two small numbers assigned in the calculation of the two improper integrals $I(\epsilon)$ and $K(\epsilon)$ of Eqs. (3.35) and (3.36). The value FK2 represents the term $\left(\frac{b \alpha}{a \beta}\right)^{2}$ and the value ACC is the accuracy required for the relative difference between two successive approximations in the Simpson's rule integration routine. In the previous numerical examples, the value assigned to ETAI and to EPS is 0.01 while the value assigned to ACC is 0.0001 .
2. Program for SUBROUTINE FMULAM

The SUBROUTINE FMULAM is written to compute either the values λ_{1}, μ_{1}, as Eq. (3.43) or the values λ_{2}, μ_{2} as Eq. (3.44), which is controlled by the number NC. The outputs defined by FLAM and FMU represent λ_{1} and μ_{1} for $N C=1$ and λ_{2} and μ_{2} for $N C=2$. The input arguments $P, Q, F M$ and $F N$ are the same as the exponents $\mathrm{p}, \mathrm{q}, \mathrm{m}$ and n of Eq. (3.43).
3. The Ma in Iteration Program

The main purpose of the program is to compute the increments of $\Delta \alpha$ and $\Delta \beta$ along the path of the steepest ascent from the current assigned values α and β. The computations are repeated for the new calculated α and β until they reach a point where the absolute values F_{α} and F_{β}, as in Eqs. (3.7) and (3.8), are less than a preassigned small number QEPS.

The input data of $F P, F Q, F M, F N$ and $N C$ listed on the first data card are supplied for the calculation of functions λ and μ. The constants EPS, ETAI and ACC on the second data card are the numbers assigned to the FUNCTIONS J_{1} through J_{7} in order to compute the integrals. The values PO and SIGO represent internal pressure p_{0} and the yield stress σ_{0} and are used to calculate the thickness t. Input data ETAO and FKV are assigned to limit the step size of α and
β in each iteration, and represent η_{0} and k_{0} in Eqs. (3.14) and (3.13). The two integers NRVWP and NRAB are the number of the sets of $V_{\min }, W_{\max }$ and the number of sets of the ratio $B O A(b / a)$ to be calculated in the program.

The input values VMIN and WMAX are two dimensionless numbers which represent the preassigned allowable minimum volume and maximum weight. The true value of the minimum volume is VMIN $\cdot\left(2 \pi a^{2}\right)$ and the true value of maximum weight is WMAX $\cdot\left(4 \pi \rho \mathrm{~g} \mathrm{p} \mathrm{o}^{\mathrm{ab}}{ }^{2} / \sigma_{\mathrm{o}}\right)$.

For the output, the results of each iteration are printed using the symbols $\mathrm{DA}, \mathrm{DB}, \mathrm{ATIL}$ and BTIL to represent $\Delta \alpha, \Delta \beta, \mathrm{F}_{\alpha}$ and F_{β} respectively.

PROGRAM FOR EXAMPLES

```
$
    FORTRAN IBN
    PUNCH LBJECT
    G0
    READ INPUT TAPE 7, 1, FP, FQ, FM, FN, NC, EPS, LTAI, ACC, NRVNP SHELLOOI
        I FORMAT (4F15.5, I10/ 3E20.8/I ILO)
        READ INPUT TAPE 7, 2, PU, SIGC, QEPS, ETAO, FKV SHELLOO3
        FORMAT (2E20.8/ 3F20.5)
        DO 69 INRVWP = 1, NRVWP
        READ INPUT TAPE 7, 5, VMIN, WMAX, NRAB
        FORMAT ( 2E20.8 /ILO)
        DO 50 INRAB = 1, NRAB
    10 READ INPUT TAPE 7, ll, ALPHA, BETA, BOA
    11 FORMAT ( 3E20.8)
    WRITE OUTPUT TAPE 6, 12, VMIN, WMAX, ROA
    2 FORMAT IBHIVMIN = ,F7.3,2X,7HWMAX = ,F7.3,3X, 4HINOA=, F6.3, //1
        NCONT =0
    TO LIMIT ALPHA AND BETA BOTH LARGER THAN DNE
    IF (ALPHA - 1.0) 15, 17, 17
    ALPHA = 1.0
    IF (RETA - 1.0) 18, 19,19
    RETA = 1.0
    19 FK2 = (BOA*ALPHA/EETA)**2
        CNCB = 1.0/RETA
        TWCB = 2.0/BETA
        THCB = 3.0/BETA
        NCONT = NCONT +1
    TO DETERMINE THE VALUE OF T= T1 OR T?
    AR= FJl(ALPHA,ONCB,ACC)
    SL=FJ4(ALPHA,ONOB,O.0,FK2,ETAI,ACC)
    RR = AR/ SL
    IF ( RR-0.5, 20, 2U, 21
C
    T2 LARGER THAN Tl
    20T=0.5*PO/SIGO
    TA = C.
    TB=0.
    CO 10 24
C
T1 LARGER THAN TZ
21T = RR *PC/SIGO
    ARA= -(CNCR)#FJ3(ALPHA,ONOR,EPS,ETAI,ACC)
    ARB= -(1.O/(BETA**2))*FJ2(ALPHA,ONOR,ETAI, ACC)
    TE=FJS(ALPHA,CNCB,TWOB,FK2,ETAI, ACC)
    SLA = FK2*(FJ7(ALPHIA,ONUB,TWOH,2.*(ALPHA-1.),FK2,EPS,ETAI,ACC) -
    1 FJT(ALPHA,CNOR,TWOR,3.*ALPHA-2.,FK2,EPS,ETAI,ACC)/BETA +
    2 TE/ALPHA)
    SLB=-\FK2/lBETA**2)l*(FJGIALPHA
    1 8ETA*TE)
        TA = (PGI/SICO) ( (ARA- AR*SLA/SL ) / SL
        HAPG/SICO)* (ARAT AR*SLA/SL ) SL SHELLO50
        TA = (PU/SICO) (ARE-AR SLB/ SL)/SL SHELLO51
    24 WRITE OUTPUT TAPE 6, 25, ALPHA, BETA, AR, SL, RR, T, IA, TA SHELLC52
25 FORMAT ( lHC, 5X, 8T12.6)
SHELLOO1 SHELLOO2 SHELLDO3
SHELLO04
SHELLOO5
SHCLLU06
SHELLOO 7
SHELLOOB
SHELLOO9 SHELL010
SHELLOLI
SHELLOI
SHELLO13
SHELLO14
SHELLO15
SHELLO16
SHELLOIT
SHCLLO18
SHELLO19
SHELL020
SHELLO2I
SHELLO22
SHELLO23
SHELLO24
SHELLO25
SHELLO26
SHELLO27
SHELLO28
SHELLO29
SHELLO30
SHELLO31
SHELLO32
SHELLO33
SHELLO34
SHELLO35
SHCLLO36
SHELLO37
SHELLO38
SHFLLO39
SHELLO40
SHELLO4 1
SHELLO42
SHELLO43
SHELLO44
SHELLO45
SHELLO46
Shellu4 7
SHELLO48
SHELLO49
SHELLO50
SHELLOS1
SHELLE52
25 FORMAT ( \(1 H C, 5 X, 8[12.61\)
SHELLOS 3
```



```
FORTRAN IBM
PUNCH OBJECT
SUBROUTINE FMULAM(P,Q,FM,FN,VMIN,WMAX,V,W,FMU,FLAM,NC)
SUBFMLOI
1 VV = V/VMIN
2 WW = W/WMAX
IF (VV-1.0) 4, 4, 10
IF (VV-1.0) 4, 4, 10
    W WRITE OUTPUT TAPE 6, 6, VMIN, WMAX, VV, WW
    SUBFMLOG
FORMAT(7H VMIN =, E12.6, &H WMAX =,E12.6.6H V = ,E14.8,6H,W = , SUBFMLO7
1E14.8,// 5X, 43HTHE PRIMARY REOUIREMENTS CANNOT BE REACHED, )
    7 FMU = -1.0
8 FLAM = - 1.0
RETURN
    IF (V-1.0) 11, 5,5
    IF (VV - 1.0) 12, 12,15
    FMU =0.0
FLAM = 1.0
IF (WW) 5, 5, 9
IF (WW) 5, 5, 16
IF (WW-1.0) 20, 17, 17
FLAM = 0.0
FMU = 1.0
RETURN
FLAM = (( 1./VMIN - VV)**P)/ ((VV-1. )**Q)
FMU = (WW**FM)/((1.0-WW)**FN)
GO TO (23,26), NC
TEMP = SORT(FLAM**2 + FMU**2)
FLAM = FLAM/TEMP
FMU = FMU/TEMP
RETURN
END
SUBFMLO2
SUBFMLO3
SUBFMLO
SUBFMLOG
SUBFMLIO
SUBFMLII
SURFMLI2
l
L1
SUBFML16
IF (WW) 5,5,16 SUBFML17
SUBFML18
SUBFML19
SUBFML21
SUBFML22
SUBFML23
SUBFML23
SUBFML25
SUBFML26
SUBFML28
SUBFML29
```

5
FORTRAN IBM
\$PUNCH OBJECT
FUNCTION FJI(P,Q,ACC) FJl 01
$\begin{array}{ll}\text { ODD }=0.0 & \text { FJl } 02 \\ I N T=1 & \text { FJl } 03\end{array}$
$\begin{array}{ll}O D D=0.0 & \text { FJl } 02 \\ I N T=1 & \text { FJl } 03\end{array}$
$V=1.0$
EVEN $=0.0$
AREA1 $=0.0$
IF (Q) 19, 5, 6
5 ENDS $=2.0 \quad$ FJl 08
GO TO 7
FJl 03
FJl 04
ENDS $=1.0$
FJI 05
FJl 06
$7 \mathrm{H}=1.0 / \mathrm{V} \quad$ FJlll 11
$O D O=E V E N+O D C \quad$ FJl 12
$x=H / 2$.
$\mathrm{EVEN}=\mathrm{C}, 0$
DO $13 \mathrm{I}=1$, INT
EVEN $=$ EVEN $+((1.0-X * * P) * *(0)$
FJl 13
DO 13 I $=1$, INT
$X=X+H$
AREA $=($ ENDS +4.0 EVEN + 2.0.OOD) *H/C. 0
$R=A B S F(A R E A 1 / A P E A-1.0)-A C C$
$1 F(R) 25,25,17$
IF (INT - 16384) 21, 19, 19
FORMAT (23H JI(P, (U) NOT CONVERGENT)
FORMAT (23H JI(P, (U) NOT CONVERGENT)
WRITE QUTPUT TAPF 6,18
Call syserr
FJI 07
FJl 08
$\begin{array}{ll}\text { FJI } & 08 \\ \text { FJ }\end{array}$
FJl 14
FJI 15
FJl 16
FJl 17
FJI 18
FJl 19
FJ1 20
CALL SYSERR
AREAI = AREA
FJl 21
$I N T=2 * I N T$
FJl 21
FJI 22
$V=2.0 \% \mathrm{~V}$
FJl 23
$\begin{array}{ll}\text { FJI } & 24 \\ \text { FJl } & 25\end{array}$
$V=2.0$
GO TO 7
FJl 25
FJl 26
GOTO 7
$\mathrm{FJI}=$ AREA
RETURA
RETURN
END
FJI 27
$\begin{array}{ll} & \text { FJJ } 29 \\ \text { FJl } 30\end{array}$
END

```
FPUNCH OORTRAN IBM
$PUNCH OBJECT
            FUNCTION FJ2(P,Q,ETAI, ACC) FJ2 01
    1 DP=P
    OP=P
    OME = 1.0 -ETAI
    3 DEL = 1.0-1.0/DP
    5 FO=1.0
    6 F1 = (1.0 - 0.5*E)**(-DEL)
    7F2 = (1.0 - E)**(-DEL)
    8DO}=
    9A=4.0#F1-F2-3.0*FO
    10B=2.0*F2-4.0*F1 + 2.0*F0
    11 T1 = DQ +1.0
    12 T2 = DQ + 2.0
    13 T3 = DQ + 3.0
    140EN = (ELOG (E)*(FO + TI*(A/T2 + B/T3)) - (FO + TI*TI*(A/(T2*T2)
    1 + B/(T3*T3)))/T1)*(E**T1)/(T1*OP)
    150DD = 0.0
    16 INT = 1
    17 V = 1.0
    18 EVEN =0.0
        AREA1 = 0.0
    19 ENDS = ((1.0 - OME**OP)**DQ)*ELOG (1.0 - OME**DP)
    20 H = OME/V
    21 ODD = EVEN + ODD
    22 X = H/2.0
    23 EVEN = 0.0
    24 DO 26 I = 1, INT
    25 EVEN = EVEN + ((1.0 - X**DP)**DQ)*ELOG (1.0 - x**DP)
    26 X = X + H
    27 AREA = (ENDS + 4.0*EVFN + 2.0*ODD)*H/6.0
    2BR = ABSF(AREA1/AREA - 1.0) - ACC
    29 IF (R) 38, 38, 30
    30 IF (INT - 16384) 34, 31, 31
    31 WRITE OUTPUT TAPE 6, 32
    32 FORMAT (23H J2(P,Q) NOT CONVERGENT)
    33 CALL SYSERR
    34 AREA1 = AREA
    35 INT = 2*INT
    36V = 2.0*V
    37 60 10 20
    38 FJ2 = AREA + EN
    39 RETURN
        END
    FJ2 04,
    FJ2 05
    FJ2 06
    FJ2 07
    FJ2 08
    FJ2 09
    FJ2 10
    FJ2 11
    FJ2 12
    FJ2 13
    FJ2 14
    FJ2 15
    FJ2 16
    FJ2 16
    FJ2 18
    FJ2 19
    FJ2 20
    FJ2 21
    FJ2 22
    FJ2 22
    FJ2 }2
    FJ2 }2
    FJ2 26
    FJ2 }2
    FJ2 28
    FJ2 }2
    FJ2 30
    FJ2 31
    FJ2 }3
    FJ2 }3
    FJ2 }3
    FJ2 35
    FJ2 36
    FJ2 37
    FJ2 38
    FJ2 39
    FJ2 40
    FJ2 41
    FJ2 41
    F1243
```

```
$ FORTRAN IBM
$PUNCH OBJECT
    FUNCTICN FJ3(P,G,EPS, ETAI, ACC) FJ3 OL
    1 DP = P
    2 DO =G - 1.0
    3 II = CP + 1.0
    4 T2 = T1/(DP + 2.0)
    T3 = T1/(CP + 3.0)
    6FO}=1.
    7E = EPS
    Fl = (1.0-(0.5*[)**DP)**DQ
    9F2 = (1.0-E**DP)**DO
    10A = 4.0*F1 - F2 - 3.0*FO
    11B=2.0*F2-4.0*F1+2.0*FO
    12OEN = (ELOG (E)*(FO + T2*A + T3*B)- (FO + T2*T2*A +T3*T3*R)/T1)*(FJ3 13
        1E**T1//T1
            FJ3 14
    13 DEL = 1.0/DP
    FJ315
    DEL = 1.0/DP
    E=1.0- ONE**CP
    15 T1 = CO + 1.0
    16 T2 = T1/(CQ + 2.0)
    17 T3 = T1/(CQ + 3.0)
    18 FO=0.0
    19 F1 = ((1.0 - C.5*E)**DEL)*ELOG (1.0 - 0. S*E)
    F2 = ((1.0 - E)**DEL)*ELOG (1.0 - E)
    A = 4.0*F1-F2-3.0*F0
    B=2.0*F2-4.0*F1 + 2.0*Fn
    23EN=EN + (FO + T2*N + T3*R)*(E**T1)/(T1*EP*OP)
    E = EPS
240ENDS = ((1.0 - E**DP)**OQ)*(E**DP)*ELUG (E)
    1 + ((1.0 - CME**DP)**CQ)*(OME**DP)*FLCG (UME)
    25 CLD = 0.0
    26 INT = 1
    27V=1.0
    28 EVEN = 0.0
    AREAI = 0.0
    H=(CME - E)/V
    ODD = EVEN + CDC
    X=E+H/2.
    EVEN = O.C
    DO 36 I = 1.INT
    EVEN = EV[N + ((1.0 - X**OP)**OQ)*(X**OP)*ELOG (x)
    X=X+H
    AREA = (ENDS + 4.O*EVEN + 2.0*OCD)*H/6.0
    R = ABSF(AREAI/AREA - 1.0)-ACC
    IF (R) 48, 48, 40
    IF (INT - 16384) 44, 42,42
    FORNAT (23H J3(P,O) NOT CONVERGENT)
    WRITF OUTPUT TAPE 6, 4I
    CALL SYSERR
    AREAI = ARCA
    INT = 2*INT
    v=2.0.v
    GO 10 30
    FJ3 = AREA + EN
    49 RETURN
    ENC
```

FJ3 01
FJ3 02
FJ3 03
FJ3 04
FJ 3 or
FJ3 06
FJ3 07
fJ3 O8
FJ3 09
FJ3 IC
FJ3 11
FJ3 12
FJ3 14

FJ3 15
FJ3 16
FJ3 17
FJ3 18
FJ3 19
FJ3 20
FJ3 21
FJ3 22
FJ3 23
FJ3 24
FJ3 25
FJ3 26
FJ3 27
FJ3 28
FJ3 29
FJ3 30
FJ3 31
FJ3 32
FJ3 33
FJ3 34
FJ3 35
FJ3 36
FJ3 37
FJ 38
FJ3 39
FJ3 40
FJ 341
FJ3 42
FJ3 43
$\begin{array}{ll}\text { FJ } & 43 \\ \text { FJ } 344\end{array}$
FJ3 45
FJ 346
FJ 347
FJ3 48
FJ3 49
FJ3 50
FJ 31
FJ3 52
FJ3 53
FJ3 54
FJ3 55

```
        FORTRAN IBM
$PUNCH OBJECT
    FUNCTION FJ4(P,Q,S,FK2, ETAI, ACC) FJ4 01
    1 DG = S + Q - 1.0
    2 Tl = LG + 1.0
    3 T2 = T1/(DG + 2.0)
    4T3 = T1/(DG + 3.0)
        OME = 1.0 - ETAI
        E = 1.0-CME*:P
    6 DP = P
    8 DEL = -2.0*(1.0 - 1.0/DP)
        OQ = 2.0*(1.0-0)
        IF (0-1.0) 11, 10, 36
    10 FO = SQRT (1.0/FK2 + 1.0)
        GO TO 12
    11 FO = 1.0
    12 OF = FK2
    13F1=SQRT ((11.0-0.5*E)**OEL)*((0.5*E)**OQ)/FK2 + 1.0)
    14 F2 = SQRT ((11.0 - E)**UEL)*(E**DG)/FK2 + 1.0)
    15A=4.0*F1-F2-3.0*FO
    16 B = 2.0*F2 - 4.0*F1 + 2.0*F0
    17EN = (FO + T2*A + T3*B)*(E**T1)*SGRT (DF)/(TI*DP)
    18 OCD = 0.0
    19 INT = l
    20 V = 1.0
    21 EVEN = C.0
        AREAI = 0.0
        EE = 1.0
        IF (P-1.0) 36, 22, 23
    22 EE = SQRT (1.0 + FK2)
    230ENDS = EE + ((1.0 - OME**DP)**DG)*SQRT ((1.0 - OME**DP)**DQ + DF*FJ4 29
        1(0ME**(2.C*OP - 2.0))) FJ4 30
    24 DDP = 2.0*(CP - 1.0)
    FJ4 31
    25 Hi=OME/V F
    26 CDD = EVEN + CDD
    27 X = H/2.0
    28 EVEN = 0.0
    FFJ4 35
    =1,INT F FJJ 36
    3OOEVEN = EVEN + ((1.0 - X**DP)**OG)*SGRT ((1.C - X**DP)**OQ + DFF(X*FJ4 37
        1*DDP)
    FJ4 38
    31 X = X + H
    32 AREA = (ENDS + 4.0.EVEN + 2.0.ODD)*H/6.0 FJ4 4C
    33R = ABSF(AREAI/AREA - 1.0) - ACC % FJ4 41
    34 IF (R) 43, 43, 35
    35 IF (INT - 16384) 39, 36, 36
    36 WRITE OUTPUT TAPE 6, 37
    37 FORMAT (25H J4(P,G,S) NCT CCNVERGENT)
    38 CALL SYSERR
    39 AREAl = AREA
    40 INT = 2.INT
    4 1 \mathrm { V } = 2 . 0 . \mathrm { V }
    42 GO TO 25
    43 FJ4 = AREA + EN
    4 4 ~ R E T U R N
        ENO
```

```
$ FORTRAN IRM
$PUNGH OBJECT
    FUNCTION FJ5(P,Q,S,FK2, CTAI, ACC) F
    OME = 1.O-ETAI FJ5 02
    2G=S - Q - 1.0
    3 CQ = 2.C#(1.0-0)
    4 DEL = 1.0-1.0/p
    ICEL = 2.0*DEL
        FK = FK2
        IF (0-1.0) 6. 5, 35
    5FK=1.0 + FK
    5 FK = 1.0 + FK 
        EPS = 1.0 -DME**P
    7 TPS = 0.5*EPS
    8 Fl = ((1.0 - TPS)**DEL)/SQRT (TPS**QQ + FK2*(11.0 - TPS)**TDEL))
    9 F2 = ((1.0 - EPS)**OEL)/SORT (EPS**QQ + FK2*((1.C - EPS)**TDEL))
    10A=4.0*F1-F2-3.0.FO
    1!B=2.0*F2 - 4.O#F1 + 2.0*F0
    12 T1 = G + 1.0
    13T2 = T1/(GG+2.0)
    14T3 = T1/(G + 3.0)
    15EN=(FO + T2*A + T3*B)*(EPS**T1)/(T1*P)
    16000 = 0.0
    17 INT = 1
    18V = 1.0
    19 EVEN = 0.C
    AREA1 =0.0
    EE = C.O
    IF (P - 1.0) 35, 20, 21
20 EE = 1.0/SQRT (1.0 + FK2)
21 ENDS = SORT (11.0-CME**P)**GQ + FK2*(CME**(2.U*P - 2.0)))
22 PP = 2.0#(P - 1.0)
3 ENDS = (ONE**PP)*((1.0 - OME**P)**G)/FNDS + Et
24H=ONE/V
25ODD = EVEN + CDU
26 X = H/2.0
27 EVEN = C.0
2800 30 I = 1, INT
290EVEN = EVEN + (X**PP)*((1.0 - X**P)**G)/SURT ((1.0 - X**P)**QQ +
    | FK2*(X**PP))
30 X = X + H
31 AREA = (ENDS + 4.OWEVEN + 2.UNOCC)*H/6.0
2 R = ABSF(AREAI/AREA - 1.0)- ACC
    IF (R) 42, 42, 34
    IF (INT - L6384) 38, 35, 35
    WRITE OLTPUT TAPE 6, 36
    FORMAT (25H J5(P,O,S) NCT CCNVERGENT)
    CALL SYSERR
    AREAL = AREA
    INT = 2*INT
    V = 2.0*V
    GC TO 24
    FJ5 = AREA + [N
    43 RETLRN
    END
        FJ5 03
    FJ5 04
    FJ5 05
        FJ5 06
        FJ5 07
        FJ5 08
    FJ5 09
    FJ5 10
    FJ5 11
    FJ5 11
    FJ5 13
    FJS }1
    FJJ 144
    FJ5 15
    FJ5 16
    FJS 18
    FJS 18
    FJS 19
    FJ5 20
    FJ5 20
    FJ5 21
    FJ5 22
    FJS 23
    FJS 23
    FJ5 24
    FJS 25
    FJ5 26
    FJ5 }2
    FJ5 28
    FJ5 29
    FJ5 29
    FJ5 30
    FJ5 31
    FJ5 31
    FJ5 32
    FJ5 33
    FJS 34
    FJS 34
    FJ5 35
    FJ5 36
    FJ5 37
    FJ5}3
    FJ5 38
    FJ5 39
    FJ546
    FJ54
    FJ542
    FJ5}4
    FJ543
    FJ544
    FJ) }4
    FJS}4
    FJ547
    rJ548
    FJ548
    FJS 50
    FJ5 51
    rJb 52
    FJ5 53
```

```
$ FORTRAN IBM
SPUNCH OBJECT
FUNCTION FJG(P,Q,R,S,FK2. ETAI, ACC)
1TQ = 2.0*(1.0-0)
1TQ = 2.0*(1.0-0)
    3TR = 2.0*(R - 1.0)
    4G=S-0-1.0
    5 TD = 2.0*(1.0-1.0/P)
    EPS = 1.0- (1.-ETAI)**P
    6TPS = 0.5*EPS
    6 TPS = 0.5*EPS 
    8T1 =G + 1.0
    9T2 =T1/1G +2.01
    T2=T1/1G +2.0)
        FK = FK2
    IF (0-1.0) 11, 10,39
    10 FK = 1.0 + FK
    11FO = 1.0/SQRT (FK)
    1 FO = 1.0/SQRT (F
    13F1 = {OMW**TTI/SQRT (TPS**TQ + FK2*(OMW**TD))
    14 OMW = 1.0-EPS 
    14OMW = 1.0-EPS 
    OME = 1.0 - ETAI
    17A = 4.0*F1 -F2-3.0%FO
18B=2.0*F2-4.0*F1 + 2.0*F0 FJ6 23
18B=2.0*F2-(EPS)*(FO+T2*A +T3*B)- (FO + T2*T2*A + T3*T3*R)/T1)FJ6 24
    1*(EPS**T1)/(T1*P)
MOM
20 OLN = 0.0 FJ6 27
2L INT = 1
22V=1.0
23 EVEN = C.0
23 EVEN = C.0 % F % FJ6 30
F
M,OME**P
1W)
27H=OME/V F
28CDD = EVEN + CDD FJ% 35
29x=H/2.0 FJ6 36
30 EVEN = 0.0
30, FO 34 I= 1, INT FJ6 38
```



```
330EVEN = EVEN + ((X**TR)*(OMW**C)/SQRT (OMW**TQ + FK2*(X**TP)))*ELCG FJ6 40
330EVEN = EVEN + ((X**TR)*(OMW**C)/SQRT (OMW**TO + FK2*(X**TP)))*ELCG FJ6 40
34 X = X + H
FJ64}4
34 X = X + H N = (ENDS + 4.O.EVEN + 2.0*ODO)*H/6.0
36 RR = ABSF(AREA1/AREA - 1.0) - ACC
37 IF (RR) 46, 46, 38
38 IF (INT - 16384) 42, 39, 39
39 WRITE DUTPUT TAPE 6,40
40 FORMAT (27H JG(P,Q,R,S) NOT CONVERGENT)
41 CALL SYSERR
4 2 ~ A R E A L ~ = ~ A R E A ~
43 INT = 2*INT
44V=2.0*V
44 V = 2.0%V
46 FJ6 = AREA + EN
47 RETURN
    END
FJG 01
FJ6 02
FJG 03
    FJ6 03
    TR =2.0*(R - 1.0)
    FJ6 }0
    FJ6 05
    FJ6 05
    FJ6 06
    FJ6 07
    FJ6 08
    FJ66 09
    FJ6 1C
    FJ6 11
    FJ6 11
    FJ6 12
    FJ6 }1
    FJ6 14
    FJ6 15
    FJ6 16
    FJ6 17
    ISORT (TPS**TQ + FK2*(OMW**TD)) FJ6 18
    FJ6 19
    FJ6 20
    FJ6 21
    FJG }2
    FJ6 29
260ENDS = ({OME**TR)*(OMW**G)/SQRT (ONW**TO + FK2*(OME**TP)))*ELOG (OMFJG 32
29 x = H/2.0
FJ6 37
FJ6443
FJ6 44
FJ6 45
FJ6 45
FJ6 46
FJ648
    FJ6 49
FJG }5
FJ6 51
    FJ6 52
47 RETURN - EN
    FJ6 53
    FJ6 54
    FJ6 55
```

```
$ FORTRAN IBM
$PUNCH OBJECT
    FUNCTION FJ7(P,Q,S,T,FK2,EPS, ETAI, ACC) FJ7 01
    TQ =2.0*(1.0-Q) FJ7 02
    2TP=2.0*(P - 1.0) FJ7 0.3
    3G=S-0-2.0 FJ7 04
    T1 =T+1.0
    T2 = T1/(T + 2.0)
    T3 =T1/(T + 3.0)
    IF (P - 1.0) 53,6,7
    6FO = 1.C/SQRT (1.0 + FK2)
    GO 10 8
    FO = 1.0
    TPS = 0.5.EPS
    OMW = 1.0 - TPS**P
    10 F1 = (OMW**G)/SQRT (OMW**TQ + FK2*(TPS**TP))
    11 OMW = 1.0 - EPS**P
    F2 = (OMW**G)/SQRT (OMW**TQ + FK2*(EPS**TP))
    A = 4.0.F1 - F2 - 3.0*F0
    B=2.0*F2-4.0*F1 + 2.0*FO
    TT =FO +T2*A + T3*B
    TU = FO + T2*T2*A + T3*T3*B
    17 EN = (ELOG (EPS)*TT - TU/T1)*(EPS**TL)/T1
    OME = 1.0 - ETAI
    19 T4 = 2.0*(1.0 - 1.0/P)
    20 T5 = T/P - 1.0 + 1.0/P
    21 Tl = G + 2.0
    22 T2 = T1/(GG+3.0)
    T3 =T1/(G+4.0)
    FK = FK2
    IF (Q - 1.0) 24, 23, 53
    23 FK = 1.0 + FK
24FO = -1.0/SQRT (FK)
    E = 1.0- CME*P
    TPS = 0.5 - E
    OMW = 1.- TPS
27 F1 = (OMW**T5)/SQRT (TPS**IQ + FK2*(OMW**T4)) ELOG(OMW)/TPS
28 OMW = 1.0-E
    F2 = (OMW**T5)/SORT (E E TO + FK2*(OMW**T4)) - ELOG(OMW) /E
    F2 = (OMW**T5)/SQRT (E **TO + FK2*(OMW**T4)) ELOG(OMW)/E FJ7 37
    30A = 4.0*F1-F2-3.0*F0
    31 B = 2.0*F2 - 4.0*F1 + 2.0*FO
    FJ7 39
    32EN=EN+(FO+T2*A + T3*B)*(E ##T1)/(T1*P*P) FJ7 40
    330DD = 0.0
    INT = 1
    v=1.0
    EVEN = 0.0
    AREA1 = 0.0
    ENDS = (EPS**T)*(OMW**G)*ELOG (EPS)/SQRT (OMW**TO + FK2*(EPS**TP))FJ744
    39 O 1.0-OME**P FJ7 48
    40 ENDS=ENDS + (OME**T)*(O**G)*ELOG (OME)/SGRT (O**TQ*FK2*(OME**TP)) FJ749
    41 H = (OME - EPS)/V FJ7 50
    420DD=EVEN + CDD 
    420DD = EVEN + CDD 
    4 4 ~ E V E N ~ = ~ C . 0 ~ \$
    45 DO 48 I= 1, INT
    460=1.0-X**P
    47 EVEN = EVEN + (X**T)*(O**G)*ELOG (X)/SORT (O**TG + FK2*(X**TP))
    48 X = X + H
    49 AREA = (ENDS + 4.O*FVEN + 2.0*OCD)*H/6.O
    50R = ABSF(AREA1/AREA - 1.0) - ACC
    51 IF (R) 60, 60, 52
    52 IF (INT - 16384) 56, 53. 53
    53 WRITE OUTPUT TAPE 6, 54
    54 FORMAT (27H J7(P,Q,S,T) NOT CONVERGENT)
    CALL SYSERR
    AREAI = AREA
    INT=2*INT
    V = 2.0.V
    G0 rO 41
    FJT = AREA + EN
    RETURN
    ENO FJ7 71
    RETUR
    FJ7 53
    FJ7 }5
    FJ7 55
    FJ7 50
    FJ7 57
    FJ7 58
    FJ7 }5
    FJ7 59
    FJ760
    FJ7 61
    FJ762
    FJ762
    FJ7 63
    FJ7 64
    FJ7 65
    FJ7 66
    FJ7 67
    FJ7 68
    FJ769
    FJ7 70
```


REFERENCES

1. "Geometrical and Inertial Properties of a Class of Thin Shells of Revolution", by Will J. Worley and Han-chung Wang

National Aeronautics and Space Administration, Grant No. NsG-434, N.A.S.A. Contractor Report CR-89, September, 1964, 208 pages.
2. "Geometrical and Inertial Properties of a Class of Thin Shells of a General Type" by Will J. Worley and Han-chung Wang

National Aeronautics and Space Administration, Grant No. NsG-434, Supplement No. 1, NASA Contractor Report CR-271, Aug. 1965, 67 pages.
3. "Minimum Weight Design of Cylindrical Shells" by Walter Freiberger Journal of Applied Mechanics, Vol. 23, No. 4., Trans. ASME, Dec. 1956, pp. 576-580.
4. "On the Optimum Design of Shells" by
R. T. Shield

Journal of Applied Mechanics, Vol. 27, No. 2, Trans. ASME, June 1960, pp. 316-322.
5. "Numerical Analysis of Unsymmetrical Bending of Shells of Revolution" by B. Budiansky and P. P. Radkowski

AIAA Journal, Vol. 1, No. 8, Aug. 1963, pp. 1833-1842.
6. "Numerical Analysis of Equations of Thin Shell of Revolution" by
P. P. Radkowski, R. M. Davis and M. R. Bolduc,

American Rocket Society Journal, Vol. 32, No. 1, Jan. 1962, pp.36-41.
7. "Analysis of Shells of Revolution Subjected to Symmetrical and Nonsymmetrical Loads" by
A. Kalnins

Journal of Applied Mechanics, Vol. 31, No. 3, Trans. ASME Sept. 1964, pp. 467-476.

TABLE I ITERATION RESULTS FOR $\lambda=\lambda_{1}, \mu \approx \mu_{1}, \mathrm{~b} / \mathrm{a}=1, \alpha_{0}=1.5, \beta_{\mathrm{o}}=1.5$

Step	α	β	$\frac{V}{2 \pi a b^{2}}$	$\frac{\mathrm{W}\left(\frac{\sigma_{o}}{\mathrm{p}_{\mathrm{o}}}\right)}{4 \pi a b^{2} \mathrm{pg}}$	$\frac{\mathrm{t}}{\mathrm{~b}}\left(\frac{\sigma_{\mathrm{o}}}{\mathrm{p}_{\mathrm{o}}}\right)$	F_{α}	F_{β}	$\Delta \alpha$	$\Delta \beta$
1	1.5000	1. 5000	. 53743	. 43810	. 5000	. 29499	. 24269	. 0885	. 0728
2	1.5885	1.5728	. 56271	. 44979	. 5000	. 27202	22630	. 0816	. 0679
3	1.6701	1. 6407	. 58448	. 46001	. 5000	. 25255	. 21206	. 0758	0636
4	1.7459	1.7043	. 60343	. 46903	. 5000	. 26893	22758	. 2228	1885
5	1.9686	1.8928	. 65276	. 49306	. 5000	. 83353	. 72064	. 2501	. 2162
6	2.2187	2.1090	. 69862	. 52328	. 5069	-. 28840	-. 28654	-. 0865	-. 0860
7	2.1322	2.0231	. 68274	. 51165	. 5035	-. 05475	-. 08112	-. 0164	-. 0243
8	2.1189	1.9915	. 67861	. 50850	. 5025	. 01648	-. 01889	. 0049	-. 0057
9	2. 1288	1.9802	. 67860	. 50846	. 5024	. 01672	-. 01885	. 0050	-. 0057
10	2. 1389	1. 9689	. 67859	. 50841	. 5024	. 01689	-. 01889	. 0051	-. 0057
11	2. 1490	1.9575	. 67859	. 50837	. 5023	. 01705	-. 01896	. 0051	-. 0057
12	2.1593	1.9461	. 67858	. 50832	. 5023	. 01721	-. 01899	. 0052	-. 0057
13	2.1696	1.9347	. 67856	. 50827	. 5022	. 01756	-. 01886	. 0053	-. 0057
14	2. 1801	1.9233	. 67856	. 50823	. 5022	. 01758	-. 01905	. 0053	-. 0057
15	2. 1998	1.9107	. 67935	. 50875	. 5023	. 00421	-. 03187	. 0021	-. 0159
16	2.2151	1.8891	. 67884	. 50830	. 5021	. 01305	-. 02400	. 0065	-. 0120
17	2.2323	1.8690	. 67865	. 50807	. 5020	. 01655	-. 02106	. 0083	-. 0105
18	2. 2505	1.8494	. 67857	. 50793	. 5019	. 01806	-. 01998	. 0090	-. 0100
19	2.2692	1.8299	. 67853	. 50783	. 5017	. 01883	-. 01960	. 0094	-. 0098
20	2.2883	1.8105	. 67851	. 50774	. 5016	. 01927	-. 01957	. 0096	-. 0098
21	2.3078	1.7911	. 67849	. 50764	. 5015	. 01971	-. 01951	. 0099	-. 0098
22	2.3277	1.7716	. 67847	. 50754	. 5014	. 02008	-. 01952	. 0100	-. 0098
23	2.3478	1.7521	. 67846	. 50745	. 5013	. 02044	-. 01955	. 0102	-. 0098
24	2.3684	1.7326	. 67844	. 50735	. 5012	. 02080	-. 01959	. 0104	-. 0098
25	2.3893	1.7130	. 67843	. 50725	. 5011	. 02116	-. 01963	. 0106	-. 0098
26	2.4105	1.6933	. 67842	. 50715	. 5010	. 02153	-. 01966	. 0108	-. 0098
27	2.4321	1.6737	. 67840	. 50704	. 5008	. 02189	-. 01968	. 0110	-. 0098
28	2.4541	1.6540	. 67838	. 50693	. 5007	. 02227	-. 01970	. 0111	-. 0099
29	2.4765	1.6343	. 67837	. 50681	. 5005	. 02276	-. 01955	. 0114	-. 0098
30	2.4992	1.6146	. 67836	. 50670	. 5004	. 02310	-. 01967	. 0116	-. 0098
31	2.5224	1.5948	. 67834	. 50659	. 5003	. 02345	-. 01974	. 0117	-. 0099

TABLE II ITERA TION RESULTS FOR $\lambda=\lambda_{1}, \mu \mu_{1}, b / a=1, \alpha_{0}=2.0, \beta_{0}=3.0$

TABLE III ITERATION RESULTS FOR $\lambda=\lambda_{1}, \mu=\mu_{1}, \mathrm{~b} / \mathrm{a}=2, \alpha_{0}=1.5, \beta_{0}=1.5$

TABLE IV ITERATION RESULTS FOR $\lambda=\lambda_{1}, \mu=\mu_{1}, b / a=2, \alpha_{0}=2.0, \beta_{0}=3.0$

TABLE V ITERATION RESULTS FOR $\lambda=\lambda_{2}, \mu=\mu_{2}, \mathrm{~b} / \mathrm{a}=1$

Step	α	β	$\frac{V}{2 \pi a b^{2}}$	$\frac{\mathrm{W}\left(\frac{\sigma_{\mathrm{o}}}{\mathrm{p}_{\mathrm{o}}}\right)}{4 \pi a b^{2} \rho g}$	$\frac{\mathrm{t}}{\mathrm{~b}}\left(\frac{\sigma_{\mathrm{o}}}{\mathrm{p}_{\mathrm{o}}}\right)$	F_{α}	F_{β}	$\Delta \alpha$	$\Delta \beta$
1	3.0000	3.0000	. 80611	. 60146	. 5238	-. 05923	-. 05224	-. 1777	-. 1567
2	2.8223	2.8433	. 78954	. 58952	. 5219	-. 06529	-. 05730	-. 1959	719
3	2.6265	2.6714	. 76878	. 57453	. 5192	-. 07086	-. 06187	-. 2126	856
4	2.4139	2.4858	. 74268	. 55566	. 5153	-. 07227	-. 06293	-. 2168	-. 1888
5	2. 1971	2.2970	. 71143	. 53294	. 5097	-. 05642	-. 04991	-. 1693	-. 1497
6	2.0278	2. 1473	. 68281	. 51206	. 5039	-. 00851	-. 01119	-. 0255	-. 0336
7	2.0023	2.1137	. 67719	. 50794	. 5026	. 00605	. 00053	. 0182	0016
8	2.0205	2.1153	. 67928	. 50944	. 5030	. 00046	-. 00402	. 0014	-. 0121
1	2.5000	2.5000	. 75000	. 56092	. 5164	-. 07211	-. 06410	-. 0721	0641
2	2. 4279	2.4359	. 74052	. 55404	. 5149	-. 07125	-. 06341	-. 0713	-. 0634
3	2.3566	2.3725	. 73062	. 54684	. 5132	-. 06854	-. 06117	-. 0685	0612
4	2.2881	2.3113	. 72056	. 53951	. 5114	-. 06330	-. 05683	-. 0633	-. 0568
5	2.2248	2.2545	. 71074	. 53233	. 5095	-. 05507	-. 05002	-. 0551	-. 0500
6	2. 1697	2.2045	. 70172	. 52577	. 5077	-. 04418	-. 04101	-. 0442	-. 0410
7	2. 1256	2.1635	. 69414	. 52022	. 5062	-. 03206	-. 03100	-. 0321	-. 0310
8	2.0935	2.1325	. 68835	. 51599	. 5049	-. 02082	-. 02172	-. 0208	-. 0217
9	2.0727	2.1108	. 68437	. 51307	. 5041	-. 01202	-. 01445	-. 0120	-. 0145
10	2.0607	2.0963	. 68188	. 51123	. 5035	-. 00605	-. 00952	-. 0061	-. 0095
11	2.0546	2. 0868	. 68041	. 51015	. 5032	-. 00239	-. 00650	-. 0024	-. 0065
1	4.0000	2.0000	. 80000	. 59625	. 5212	-. 04804	-. 07411	-. 0480	-. 0741
2	3.9520	1.9259	. 79348	. 59140	. 5203	-. 04939	-. 07776	-. 0494	-. 0778
3	3.9026	1.8481	. 78631	. 58605	. 5192	-. 05070	-. 08166	-. 0507	-. 0817
4	3.8519	1.7665	. 77837	. 58011	. 5178	-. 05189	-. 08576	-. 0519	-. 0858
5	3.8000	1.6807	. 76958	. 57350	. 5163	-. 05282	-. 08990	-. 0528	-. 0899
6	3.7472	1.5908	. 75982	. 56610	. 5144	-. 05324	-. 09376	-. 0532	-. 0938
7	3.6939	1.4971	. 74898	. 55782	. 5122	-. 05273	-. 09669	-. 0527	-. 0967
8	3.6412	1.4004	. 73704	. 54864	. 5096	-. 05063	-. 09744	-. 0506	-. 0974
9	3.5906	1.3029	. 72414	. 53862	. 5065	-. 04591	-. 09385	-. 0459	-. 0939
10	3.5447	1.2091	. 71082	. 52814	. 5030	-. 03744	-. 08295	-. 0374	-. 0830
1	3.5072	1.1261	69826	51874	4994	. 0055	-. 00138	-. 0055	-. 0

TABLE VI ITERATION RESULTS FOR $\lambda=\lambda, \mu=\mu 3, \mathrm{~b} / \mathrm{a}:=1$

Step	α	β	$\frac{\mathrm{V}}{2 \pi a b^{2}}$	$\frac{W\left(\frac{\sigma_{o}}{p_{o}}\right)}{4 \pi a b^{2} \rho g}$	$\frac{\mathrm{t}}{\mathrm{~b}}\left(\frac{\sigma_{\mathrm{o}}}{\mathrm{p}_{\mathrm{o}}}\right)$	F_{α}	F_{β}	Δa^{\prime}	$\Delta \beta$
1	1.5000	1.5000	. 53743	. 43810	. 5000	. 29499	. 24269	. 1838	. 1512
2	1.6838	1.6512	. 58787	. 46162	. 5000	. 24949	20988	. 2121	. 1784
3	1. 8959	1.8296	. 63745	. 48553	. 5000	. 10529	. 09039	. 2106	1808
4	2. 1064	2.0104	. 67902	. 50889	. 5026	. 03332	. 02410	. 0667	. 0482
5	2. 1731	2.0586	. 68997	. 51692	. 5050	. 02556	. 01793	. 0511	. 0359
6	2.2242	2.0944	. 69793	. 52274	. 5067	. 02035	.01376	. 0407	. 0275
7	2.3259	2. 1606	. 71246	. 53335	. 5100	. 01173	. 00680	. 0235	. 0136
8	2.3868	2. 1937	. 72019	. 53898	. 5110	. 00761	. 00342	. 0152	. 0069
9	2.4274	2.2100	. 72473	. 54228	. 5118	. 00532	. 00153	. 0107	. 0031
10	2.4380	2.2131	. 72584	. 54306	. 5120	. 00479	. 00109	. 0096	. 0022
1	2.5000	3.0000	. 77759	. 58111	. 5206	-. 01458	-. 01210	-. 0292	-. 0242
2	2.4709	2.9758	. 77447	. 57887	. 5202	-. 01373	-. 01149	-. 0275	-. 0230
3	2.4434	2.9528	. 77145	. 57670	. 5198	-. 01286	-. 01088	-. 0257	-. 0218
4	2.4177	2.9311	. 76856	. 57463	. 5194	-. 01199	-. 01027	-. 0240	-. 0205
5	2.3937	2.9105	. 76581	. 57265	. 5190	-. 01112	-. 00966	-. 0222	-. 0193
6	2.3715	2.8912	. 76320	. 57077	. 5187	-. 01025	-. 00906	-. 0205	-. 0181
7	2.3150	2.8403	. 75626	. 56578	. 5177	-. 00778	-. 00736	-. 0156	-. 0147
8	2.2728	2.7992	. 75070	. 56178	. 5168	-. 00562	-. 00590	-. 0112	-. 0118
9	2.2428	2.7663	. 74642	. 55869	. 5162	-. 00385	-. 00471	-. 0077	-. 0094
10	2.2284	2.7482	. 74419	. 55708	. 5158	-. 00288	-. 00406	-. 0058	-. 0081
1	3.0000	2.0000	. 75000	. 56001	. 5151	-. 00521	-. 00949	-. 0104	-. 0190
2	2.9896	1.9810	. 74796	. 55847	. 5148	-. 00455	$\cdots .00885$	-. 0091	-. 0177
3	2.9805	1.9633	. 74606	. 55707	. 5144	-. 00393	-. 00825	-. 0079	-. 0165
4	2.9726	1.9468	. 74430	. 55576	. 5141	-. 00334	-. 00767	-. 0067	-. 0153
5	2.9603	1.9172	. 74123	. 55346	. 5135	-. 00229	-. 00663	-. 0046	-. 0133
6	2.9521	1.8916	. 73869	. 55154	. 5130	-. 00140	-. 00575	-. 0028	-. 0115
7	2.9473	1.8694	. 73660	. 54997	. 5126	-. 00066	-. 00500	-. 0013	-. 0100
8	2. 9460	1.8594	. 73570	. 54930	. 5124	-. 00034	-. 00468	-. 0007	-. 0094

Fig. 1 Weighting Functions λ_{1} and μ_{1}

Fig. 2 Weighting Functions λ_{2} and μ_{2}

Fig. 3 Variation of the Function F
with α and β

Fig. 4 Variation in Projections of Ridges on $\alpha-\beta$ Plane

Fig. $5 \quad$ Variation in $V_{x a} / a h^{2}$ with α and β

Fig. 6 Variation in A / a^{2} with α and β for $b / a=1.0$

Recent T. \& A. M. Reports

No.

Title	Date
"Evaluation of Bonding Characteristics of Deformed Wire," by Russell S. Jensen and Clyde E. Kesler.	May, 1964
"Geometrical and Inertial Properties of a Class of Thin Shells of a General Type, " by Will J. Worley and Han-chung Wang.	June, 1964
"The Fatigue Toughness of Metals: A Data Compilation," by Gary R. Halford.	June, 1964
"On a Theory for Axisymmetric Elastic Shells of Moderate Thickness," by R. J. Nikolai and A. P. Boresi.	July, 1964
"The Stress Distribution in a Notched Semi-infinite Plate," by D. Shadman.	August, 1964
"Yield Behavior of Niobium Single Crystals, " by D. C. Huffaker.	September, 1964
"Euler Buckling of a Ring-Reinforced Cylindrical Shell Subjected to External Pressure, " by H. L. Langhaar, A. P. Boresi and C. C. Fretwell.	September, 1964
"Photoelastic Study of the Stresses Near Openings in Pressure Vessels," by N. C. Lind and C. E. Taylor.	October, 1964
"Theoretical and Experimental Investigation of the Tensile Moduli of Parallel Filament Composites, " by John W. Melvin.	November, 1964
"Third Conference on Fundamental Research in Plain Concrete," by Clyde E. Kesler.	November, 1964
"The Effect of Temperature on Cycle Dependent Deformation, " by Brian R. Gain.	December, 1964
"An Investigation Into the Effect of Environmental Treatments on the Strength of E Glass Fibers,' by N. M. Cameron.	January, 1965
"Crack Extension in Fiberglass Reinforced Plastics and a Critical Examination of the General Fracture Criterion, " by E. M. Wu and R. C. Reuter, Jr.	January, 1965
"Applications of Lasers to Photoelasticity," by C. E. Taylor, C. E. Bowman, W. P. North, and W. F. Swinson.	February, 1965

TAM

[^0]: *Numbers in brackets refer to the References.
 **The notation (3.1) is adopted to aid in cross-referencing equations from the first two reports under the grant $[1,2]$.

