ŧ.

T.&A.M. REPORT NO.281

A METHOD FOR DETERMINING AN OPTIMUM SHAPE OF A CLASS OF THIN SHELLS OF REVOLUTION

GPO PRICE \$	
CSFTI PRICE(S) \$	Ьу
Hard copy (HC) <u>3.02</u> Microfiche (MF) <u>50</u>	Morris Stern Han-chung Wang Will J. Worley
ff 653 July 65	
Prepared L NATIONAL AERON	Jnder Grant No. (NGR-14-005-010) AUTICS AND SPACE ADMINISTRATION WASHINGTON. D.C. 5-33503 ACCEDUAL INDICATION (CODE) (CO
DEPARTMENT OF	THEORETICAL AND APPLIED MECHANICS UNIVERSITY OF ILLINOIS URBANA, ILLINOIS

A METHOD FOR DETERMINING AN OPTIMUM SHAPE OF A CLASS OF THIN SHELLS OF REVOLUTION

by

Morris Stern Han-chung Wang Will J. Worley

Prepared under Grant No. NGR 14-005-010

by the

Department of Theoretical and Applied Mechanics UNIVERSITY OF ILLINOIS URBANA, ILLINOIS

3

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. July, 1965

TABLE OF CONTENTS

t

•

SUMMARY		Page 1
INTRODUC		2
1	Statement of the Problem	2
+. 2	Symbols	2 4
2. 3.	Acknowledgment	- 6
DISCUSSION	NOF THE METHOD	7
MATHEMA	TICAL FORMULATION	10
NUMERICA	L INTEGRATION	16
NUMERICA	L COMPUTATIONS	20
1.	The Ranges of the Volumes and Weights of Shells	20
2.	Weighting Functions λ and μ	22
3.	Numerical Examples	23
APPENDIXE	S	27
Α.	Iteration Procedure with Varying Shell Length	27
B.	FORTRAN Programs	28
REFERENC	ES	39
TABLES -		40
I.	Iteration Results for $\lambda = \lambda_1$, $\mu = \mu_1$, b/a = 1, $\alpha_0 = 1.5$, $\beta_0 = 1.5$ -	40
II.	Iteration Results for $\lambda = \lambda_1$, $\mu = \mu_1$, $b/a = 1$, $\alpha_0 = 2.0$, $\beta_0 = 3.0$ -	4 1
III.	Iteration Results for $\lambda = \lambda_1$, $\mu = \mu_1$, $b/a = 2$, $\alpha_0 = 1.5$, $\beta_0 = 1.5$ -	42
IV.	Iteration Results for $\lambda = \lambda_1$, $\mu = \mu_1$, $b/a = 2$, $\alpha_0 = 2.0$, $\beta_0 = 3.0$ -	43
V.	Iteration Results for $\lambda = \lambda_2$, $\mu = \mu_2$ b/a = 1	44
VI.	Iteration Results for $\lambda = \lambda_3$, $\mu = \mu_3$, $b/a = 1$	45
FIGURES		46
1.	Weighting Functions λ_1 and μ_1	46
2.	Weighting Functions λ_2 and μ_2	46
3,	Variation of the Function F with α and β	47
4.	Variation in Projections of Ridges on $\alpha - \beta$ Plane	48
5,	Variation in V_{xa}/ab^2 with α and β	49
6.	Variation in A/a^2 with α and β for $b/a = 1.0$	50

A METHOD FOR DETERMINING AN OPTIMUM SHAPE OF A CLASS OF THIN SHELLS OF REVOLUTION

by

Morris Stern, Han-chung Wang, Will J. Worley Department of Theoretical and Applied Mechanics University of Illinois Urbana, Illinois

SUMMARY

33503

This third report under the current grant is concerned with a method for determining an optimum shape of a convex shell of revolution with respect to volume, weight and length.

The technique used depends on replacing the class of functions, over which the shape may range, by the parameters b/a, α and β in the equation

$$\left|\frac{\mathbf{x}}{\mathbf{a}}\right|^{\alpha} + \left|\frac{\mathbf{y}}{\mathbf{b}}\right|^{\beta} = 1$$

where a, b, α and β are positive constants not necessarily integers, with α and β equal to or greater than unity. The bodies of revolution are generated by revolving the line, described by the above equation, about the x-axis.

The procedure is illustrated for a thin shell which will fit within the space defined by a circular cylinder of radius b and length 2a. The shell is optimized, in terms of α and β , with respect to volume and weight. The FOR-TRAN program used to achieve these results is presented in Appendix B.

Author

INTRODUCTION

1. Statement of the Problem.

The previous reports under the current grant, [1,2] * stated a future objective of the project as being the optimum contour design of a class of shells. This third report is directed toward achieving that objective in terms of enclosed volume and shell weight for thin shells of revolution.

Optimization can be treated in several ways. A general formulation of the optimization of the design of thin shells of revolution might include the determination of the shell shape as well as the variation of the shell thickness along meridional lines. A less general approach involves assigning the shape and varying the shell thickness [3, 4]. The current report treats an alternate approach. Here a uniform thickness is maintained, but the meridional lines which define the geometry are permitted to vary in accordance with the relation

$$\left|\frac{\mathbf{x}}{\mathbf{a}}\right|^{\alpha} + \left|\frac{\mathbf{y}}{\mathbf{b}}\right|^{\beta} = 1$$
 (3.1)**

where a, b, α and β are positive constants, not necessarily integers.

The use of Eq. (3.1) permits an optimization of shape which is limited to the choice of the parameters α and β for a shell of length 2a and of radius b. The body of this report is limited to the variation of α and β for fixed length and fixed diameter, but Appendix A presents a mathematical formulation which permits the length to vary as well as α and β .

The achievement of the stated objective depends on a suitable failure criterion. One criterion could involve a complete stress analysis of the shell including varying thickness. Others could include thick walled shells or buckling. However, in illustrating the method, the shells have been restricted to thin, constant thickness walls with internal pressure loading. Further the failure is assumed to occur either on the central plane circle normal to the x-axis at x = 0or along a meridian. Thus separate computer programs which involve the complete stress analysis of the shell have not been used.

^{*}Numbers in brackets refer to the References.

^{**}The notation (3.1) is adopted to aid in cross-referencing equations from the first two reports under the grant [1, 2].

The techniques described can be applied in a manner which would permit the direct inclusion of one of the existing computer programs on the stress analysis of shells [5, 6, 7]. These auxilliary computer programs would provide the thickness requirement or the variation in thickness of the shell when incorporated into the proper location within the FORTRAN program presented in this report. In this way the optimized shell would be based on a more realistic failure criterion than is actually reported.

٠

~

2. Symbols

a	half length of the shell, [L]*
b	radius of the shell in the equatorial plane, $[L]$
x	horizontal coordinate of the first quadrant of Eq. (3.1), $[L]$
у	vertical coordinate of the first quadrant of Eq. (3.1), $[L]$
g	acceleration due to gravity, $\left[LT^{-2}\right]$
v _{xa}	volume of the shell, $\begin{bmatrix} L^3 \end{bmatrix}$
w	weight of the shell, $[MLT^{-2}]$
А	surface area of the shell, $\begin{bmatrix} L^2 \end{bmatrix}$
Aa	area enclosed by first quadrant of Eq. (3.1), $\begin{bmatrix} L^2 \end{bmatrix}$
L	arc length in the first quadrant of Eq. (3.1), $[L]$
t	thickness of the shell, $[L]$
V _{min}	preassigned minimum allowable volume of the shell, $\begin{bmatrix} L^3 \end{bmatrix}$
W _{max}	preassigned maximum allowable weight of the shell, $[MLT^{-2}]$
amax	preassigned maximum half length of the shell, $[L]$
v _{cyl}	volume of cylinder with radius b, length 2a, $\begin{bmatrix} L^3 \end{bmatrix}$
W _{cyl}	weight of cylindrical shell with radius b, length 2a, $[MLT^{-2}]$
v	ratio of V_{xa}/V_{min} , [1]
W	ratio of W/W _{max} , [1]
l	ratio of a/a_{max} , [1]
h ²	$\left(\frac{\mathbf{b}\alpha}{\mathbf{a}\beta}\right)^2$, [1]

^{*}The dimensional notation [L] indicates a length while [M] indicates mass, [T] indicates time and [1] indicates a dimensionless quantity.

P _o	uniform internal pressure on shells, $\left[ML^{-1}T^{-2}\right]$						
k _o	preselected limiting value for the ratio $\Delta \alpha / F_{\alpha}$ or $\Delta \beta / F_{\beta}$						
	of iteration, [1]						
α	exponent of the absolute value of x/a , [1]						
β	exponent of the absolute value of y/b, $[1]$						
α	(as a subscript) indicates partial differentiation with respect to α , $\begin{bmatrix} 1 \end{bmatrix}$						
β	(as a subscript) indicates partial differentiation with respect to β , [1]						
ρ	mass density, $\left[ML^{-3}\right]$						
λ	non-negative weighting function of v, $\begin{bmatrix} 1 \end{bmatrix}$						
μ	non-negative weighting function of w, $\begin{bmatrix} 1 \end{bmatrix}$						
ν	non-negative weighting function of ℓ , [1]						
σο	yield stress of the shell material, $\left[ML^{-1}T^{-2}\right]$						
η_0^2	preselected limiting value for the maximum change in ($\Delta v^2 + \Delta w^2$)						
	to be allowed in one iteration step, $\begin{bmatrix} 1 \end{bmatrix}$						
J_1 through	J_7 integrals as defined in Eqs. (3.33)						

 $I(\epsilon)$, $K(\epsilon)$ improper integrals as defined in Eqs. (3.35) and (3.36)

•

٠

.

3. Acknowledgment

This project was sponsored by the National Aeronautics and Space Administration, Office of Advanced Research and Technology, Applied Mathematics Branch, of which Dr. Raymond H. Wilson is Chief.

The investigation was part of the work of the Engineering Experiment Station of which Professor Ross J. Martin is Director and was conducted in the Department of Theoretical and Applied Mechanics of which Professor Thomas J. Dolan is Head, with Will J. Worley as Principal Investigator.

The authors wish to acknowledge the assistance of Charles Cecil Fretwell, formerly Instructor in Theoretical and Applied Mechanics, University of Illinois, in the early stages of the numerical programming and the assistance of undergraduate students: Messrs. Tom E. Breuer and Edward H. Stredde with various phases of the project.

The suggestion that the length variation be included as a parameter in the optimization procedure was made by Melvin G. Rosche, Space Vehicle Structures Program, NASA, Washington, D. C.

Both the ILLIAC II and the IBM 7094 computer facilities were used. The ILLIAC II was constructed in the Digital Computer Laboratory, now known as the Department of Computer Science, University of Illinois with support from the Atomic Energy Commission, grant USAEC AT(11-1)-415, and from the Office of Naval Research, grant NONOR-1832 (15). The IBM 7094 computer facility is partially supported by the National Science Foundation under grant NSF GP700.

DISCUSSION OF THE METHOD

Otpimization with respect to enclosed volume and shell weight, for a shell of revolution defined by the meridian curve Eq. (3.1) is achieved by considering the exponents α and β as parameters.

Then the volume and weight may be expressed as

$$V_{xa} = V_{xa}(\alpha, \beta) \tag{3.2}$$

$$W = \rho g A(\alpha, \beta) t(\alpha, \beta)$$
(3.3)

where ρ is the mass density of the material of the shell, g is the gravitational acceleration, while A represents the area of the middle surface of the shell and t is the thickness. The thickness is maintained constant over the entire shell and is small compared to the radius b and to the length a.

Both the volume V_{xa} and the surface area A depend only on the geometrical shape of the shell, which is controlled by the parameters α and β for the fixed cylindrical volume. The thickness t depends on the geometrical shape of the shell, on the load condition and on the failure criteria. Therefore the mode of the failure of the shell, under a specified load condition, must be defined for the evaluation of the thickness t, before optimization can be achieved.

Let the primary design requirements, to be fulfilled for the shell, be

$$v_{xa} \ge v_{min}$$
 , $W \le W_{max}$

where V_{\min} and W_{\max} are preassigned limits. It is further assumed that at least one set of values (α, β) will satisfy the primary requirements. Otherwise the material of the shell, the assumed mode of failure, the load conditions, or the dimensions a and b have to be modified in order to determine an optimum shape.

To facilitate the calculations, the ratios of the volume and weight are introduced as

$$v = \frac{V_{xa}}{V_{min}}$$
, $w = \frac{W}{W_{max}}$ (3.4)

The differential of a function is then defined as

$$dF = \lambda \, dv - \mu \, dw \tag{3.5}$$

where λ and μ are non-negative weighting functions of v and w, which define the relative importance of increasing in volume and of decreasing in weight. These weighting functions are defined in terms of current volume and weight. As long as it is possible to select dv and dw, consistent with the constraints of the problem, such that dF is positive, one has not achieved the optimum shape. Thus one seeks the values of α and β for which the differential dF is either zero or negative.

While superior shapes may exist, the above criteria will assure an optimum shape within the limitations of Eq. (3.1) and with the imposed constraints on volume and weight.

To determine the values of α and β for which F yields the extreme value, one may write Eq. (3.5) in the form

$$dF = F_{\alpha} d\alpha + F_{\beta} d\beta$$
 (3.6)

with

$$\mathbf{F}_{\alpha} = \lambda \, \mathbf{v}_{\alpha} - \mu \, \mathbf{w}_{\alpha} \tag{3.7}$$

$$F_{\beta} = \lambda v_{\beta} - \mu w_{\beta}$$
(3.8)

where the subscripts α and β indicate the partial differentiation with respect to α and β .

If Eq. (3.6) is an exact differential, then in principle one need only look among the solutions of $F_{\alpha} = F_{\beta} = 0$ for the optimum shape. Because of the complex nature of the equations for v_{α} , v_{β} , w_{α} and w_{β} , it is difficult to determine whether Eq. (3.6) is exact. Even if Eq. (3.6) were exact, the analytical solution of $F_{\alpha} = F_{\beta} = 0$ would be extremely difficult to obtain. The following iterative procedure is therefore used in the evaluation of $F_{\alpha} = F_{\beta} = 0$.

A shape defined by a set of α and β consistent with the primary requirements is selected first. This defines the shape of the shell middle surface. Therefore, the volume and the surface area of the shell can be calculated and the required thickness computed consistent with the assumed mode failure of the shell. Once the volume and weight are computed, values of λ and μ , which were defined by the design criterion, are established. Hence the values of F_{α} and F_{β} are determined by Eqs. (3.7) and (3.8). The shape is then modified by incrementing α and β in accordance with the path of the steepest ascent

$$d\alpha : d\beta = F_{\alpha} : F_{\beta}$$
(3.9)

The iterative procedure is repeated until F_{α} and F_{β} are both essentially zero.

To determine the incremental size $\Delta \alpha$ and $\Delta \beta$ for the steps in the iteration, let a constant k be defined from Eq. (3.9) as

$$\frac{\Delta\alpha}{F_{\alpha}} = \frac{\Delta\beta}{F_{\beta}} = k$$
(3.10)

Therefore

$$dv = v_{\alpha} d\alpha + v_{\beta} d\beta = k(v_{\alpha} F_{\alpha} + v_{\beta} F_{\beta})$$
(3.11)

$$dw = w_{\alpha} d\alpha + w_{\beta} d\beta = k(w_{\alpha} F_{\alpha} + w_{\beta} F_{\beta})$$
(3.12)

In order to limit the size of the increments of Δv and Δw , and of $\Delta \alpha$ and $\Delta \beta$, the constant k is selected in the following way

$$k = \begin{cases} k_{1} \text{ if } k_{1} < k_{0} \\ k_{0} \text{ if } k_{1} > k_{0} \end{cases}$$
(3.13)

The constant k_1 is determined from Eqs. (3.11) and (3.12) consistent with the assigned increments of Δv and Δw , and is evaluated as follows

$$\eta_{o}^{2} = \Delta v^{2} + \Delta w^{2} = k_{1}^{2} \left[\left(v_{\alpha} F_{\alpha} + v_{\beta} F_{\beta} \right)^{2} + \left(w_{\alpha} F_{\alpha} + w_{\beta} F_{\beta} \right)^{2} \right]$$

from which

$$k_{1} = \eta_{0} / \left[\left(v_{\alpha} F_{\alpha} + v_{\beta} F_{\beta} \right)^{2} + \left(w_{\alpha} F_{\alpha} + w_{\beta} F_{\beta} \right)^{2} \right]^{1/2}$$
(3.14)

where η_0^2 is a preselected limiting value for the maximum change of $(\Delta v^2 + \Delta w^2)$ to be allowed in one iteration step, while k_0 is a preselected limiting value for the ratio $\Delta \alpha/F_{\alpha}$ or $\Delta \beta/F_{\beta}$ for each step of iteration. The process is then repeated with a new set of values of α and β formed by adding the increments $\Delta \alpha$ and $\Delta \beta$ to the previous values. The iteration process terminates when the value $(F_{\alpha}^2 + F_{\beta}^2)$ is less than a preassigned accuracy parameter.

The mathematical formulation of the more general problem which permits the length to vary as well as α and β is presented in Appendix A.

MATHEMATICAL FORMULATION

In the process of iteration, as described in the previous sections, the values of v, v_{α} , v_{β} , w, w_{α} and w_{β} for a given set of values of α and β must be calculated. From Eqs. (3.3) and (3.4), w_{α} and w_{β} may be written as

$$w_{\alpha} = \frac{\rho g}{W_{\text{max}}} (A t_{\alpha} + A_{\alpha} t)$$
(3.15)

$$w_{\beta} = \frac{\rho g}{W_{\text{max}}} (A t_{\beta} + A_{\beta} t)$$
(3.16)

The symbols used in the iteration procedure, described earlier in the report, are defined by the following integrals. The notation in these integrals is consistent with that used in the previous reports under the current research grant [1, 2].

$$v = \frac{2 \pi b^{2}}{V_{\min}} \int_{0}^{a} \left[1 - \left(\frac{x}{a}\right)^{\alpha} \right]^{2/\beta} dx$$
$$= \frac{2 \pi a b^{2}}{V_{\min}} \int_{0}^{1} (1 - X^{\alpha})^{2/\beta} dX \qquad (3.17)$$

$$v_{\alpha} = \frac{-2 \pi a b^2}{V_{\min}} \left(\frac{2}{\beta}\right) \int_0^1 (1 - X^{\alpha})^{(2-\beta)/\beta} X^{\alpha} \log X \, dX$$
 (3.18)

$$v_{\beta} = \frac{-2 \pi a b^2}{V_{\min}} \left(\frac{2}{\beta^2}\right) \int_0^1 (1 - X^{\alpha})^{2/\beta} \log(1 - X^{\alpha}) dX$$
(3.19)

$$A = 4 \pi b \int_{0}^{a} \left[1 - \left(\frac{x}{a}\right)^{\alpha}\right]^{1/\beta} \left\{1 + \left(\frac{b\alpha}{a\beta}\right)^{2} - \left(\frac{x}{a}\right)^{2(\alpha-1)} - \left[1 - \left(\frac{x}{a}\right)^{\alpha}\right]^{2(1-\beta)/\beta}\right\}^{1/2} dx$$

$$=4 \pi ab \int_{0}^{1} (1 - X^{\alpha})^{1/\beta} \left[1 + \left(\frac{b\alpha}{a\beta}\right)^{2} X^{2(\alpha - 1)} (1 - X^{\alpha})^{2(1-\beta)/\beta}\right]^{1/2} dX \quad (3.20)$$

Let
$$F(X, \alpha, \beta) = 1 + \left(\frac{b\alpha}{a\beta}\right)^2 X^{2(\alpha - 1)} (1 - X^{\alpha})^{2(1-\beta)/\beta}$$

and $h^2 = \left(\frac{b\alpha}{a\beta}\right)^2$

ar

then
$$A_{\alpha} = 4 \pi ab \left\{ \left(\frac{h^2}{\alpha} \right) \int_0^1 F(X, \alpha, \beta)^{-1/2} X^{2(\alpha-1)} (1 - X^{\alpha})^{(3-2\beta)/\beta} dX \right\}$$

$$-\frac{1}{\beta} \int_{0}^{1} F(X, \alpha, \beta)^{-1/2} X^{\alpha} (1 - X^{\alpha})^{(1-\beta)/\beta} \log X dX$$

+ $h^{2} \int_{0}^{1} F(X, \alpha, \beta)^{-1/2} X^{2(\alpha-1)} (1 - X^{\alpha})^{(3-2\beta)/\beta} \log X dX$
- $h^{2} \left(\frac{2-\beta}{\beta}\right) \int_{0}^{1} F(X, \alpha, \beta)^{-1/2} X^{(3\alpha-2)} (1 - X^{\alpha})^{3(1-\beta)/\beta} \log X dX \right\} (3.21)$

and

$$A_{\beta} = -4 \pi \operatorname{ab}\left\{ \left(\frac{h^2}{\beta} \right) \int_{0}^{1} F(X, \alpha, \beta)^{-1/2} X^{2(\alpha - 1)} (1 - X^{\alpha})^{(3 - 2\beta)/\beta} dX + \frac{1}{\beta^2} \int_{0}^{1} F(X, \alpha, \beta)^{-1/2} (1 - X^{\alpha})^{1/\beta} \log (1 - X^{\alpha}) dX + 2 \left(\frac{h^2}{\beta^2} \right) \int_{0}^{1} F(X, \alpha, \beta)^{-1/2} X^{2(\alpha - 1)} (1 - X^{\alpha})^{(3 - 2\beta)/\beta} \log (1 - X^{\alpha}) dX \right\} (3.22)$$

The next step consists of the determination of the thickness t and the values of t_{α} and t_{β} . These values should ideally be determined from a limit analysis, but since this would constitute a major undertaking in itself [6, 7], the following simple failure criterion is adopted. It is assumed that under a uniform internal pressure, p_0 , the shell will fail by general yielding either along a longitudinal plane or around

the equatorial plane. If σ_0 is the yield stress for the shell material, failure along a longitudinal plane requires a thickness given by

$$t_1 = \left(\frac{p_0}{\sigma_0}\right) \frac{A_a}{L}$$
(3.23)

while failure around the equatorial plane requires a thickness given by

$$t_2 = \frac{1}{2} \left(\frac{P_0}{\sigma_0} \right) b \tag{3.24}$$

where A_a is the area enclosed by the first quadrant of Eq. (3.1) and L is the complete arc length in the first quadrant of Eq. (3.1). The design thickness t should be either t_1 or t_2 , whichever is larger. If $t_2 \ge t_1$ then t equals t_2 , a constant; therefore $t_{\alpha} = t_{\beta} = 0$. For $t_2 < t_1$, then by Eq. (3.23).

$$t_{\alpha} = \frac{p_{o}}{\sigma_{o}} \left[\frac{(A_{a})_{\alpha}}{L} - \frac{A_{a}L_{\alpha}}{L^{2}} \right]$$
(3.25)

$$t_{\beta} = \frac{p_{o}}{\sigma_{o}} \left[\frac{(A_{a})_{\beta}}{L} - \frac{A_{a}L_{\beta}}{L^{2}} \right]$$
(3.26)

where

$$A_{a} = b \int_{0}^{a} \left[1 - \left(\frac{x}{a} \right)^{\alpha} \right]^{1/\beta} dx = ab \int_{0}^{1} (1 - X^{\alpha})^{1/\beta} dX$$
(3.27)

$$(A_{a})_{\alpha} = \frac{\partial A_{a}}{\partial \alpha} = -\left(\frac{ab}{\beta}\right) \int_{0}^{1} (1 - X^{\alpha})^{(1-\beta)/\beta} X^{\alpha} \log X \, dX \qquad (3.28)$$

$$(A_a)_{\beta} = \frac{\partial A_a}{\partial \beta} = -\left(\frac{ab}{\beta^2}\right) \int_0^1 (1 - X^{\alpha})^{1/\beta} \log(1 - X^{\alpha}) dX$$
(3.29)

$$L = \int_{0}^{a} \left\{ 1 + \left(\frac{b\alpha}{a\beta}\right)^{2} \left(\frac{x}{a}\right)^{2(\alpha-1)} \left[1 - \left(\frac{x}{a}\right)^{\alpha}\right]^{2(1-\beta)/\beta} \right\}^{1/2} dX$$
$$= a \int_{0}^{1} F(X, \alpha, \beta)^{1/2} dX \qquad (3.30)$$

$$L_{\alpha} = a \left\{ \frac{h^2}{\alpha} \int_0^1 F(X, \alpha, \beta)^{-1/2} X^{2(\alpha-1)} (1 - X^{\alpha})^{2(1-\beta)/\beta} dX + h^2 \int_0^1 F(X, \alpha, \beta)^{-1/2} X^{2(\alpha-1)} (1 - X^{\alpha})^{(2-3\beta)/\beta} \log X dX \right\}$$

$$-\frac{h^2}{\beta}\int_0^1 F(X, \alpha, \beta)^{-1/2} X^{3\alpha-2} (1 - X^{\alpha})^{(2-3\beta)\beta} \log X \, dX \bigg\}$$
(3.31)

$$L_{\beta} = a \left\{ -\frac{h^2}{\beta} \int_0^1 F(X, \alpha, \beta)^{-1/2} X^{2(\alpha-1)} (1 - X^{\alpha})^{2(1-\beta)/\beta} dX \right\}$$

$$-\frac{h^2}{\beta^2}\int_0^1 F(X, \alpha, \beta)^{-1/2} X^{2(\alpha-1)} (1 - X^{\alpha})^{2(1-\beta)/\beta} \log (1 - X^{\alpha}) dX$$
(3.32)

All of the integrals which appear in the above equations may be collected into seven groups, by defining the following convergent but sometimes improper integrals in notations as

$$J_{1}(p, q) = \int_{0}^{1} (1 - u^{p})^{q} du$$
$$J_{2}(p, q) = \int_{0}^{1} (1 - u^{p})^{q} \log (1 - u^{p}) du$$

•

$$\begin{split} J_{3}(p, q) &= \int_{0}^{1} (1 - u^{p})^{q-1} u^{p} \log u \, du \\ J_{4}(p, q, s) &= \int_{0}^{1} (1 - u^{p})^{s} \left[1 + h^{2} u^{2(p-1)} (1 - u^{p})^{2(q-1)} \right]^{1/2} du \\ (3.33) \\ J_{5}(p, q, s) &= \int_{0}^{1} \left[1 + h^{2} u^{2(p-1)} (1 - u^{p})^{2(q-1)} \right]^{-1/2} u^{2(p-1)} (1 - u^{p})^{s-2} \, du \\ J_{6}(p, q, r, s) &= \int_{0}^{1} \left[1 + h^{2} u^{2(p-1)} (1 - u^{p})^{2(q-1)} \right]^{-1/2} u^{2(r-1)} (1 - u^{p})^{s-2} \\ \log (1 - u^{p}) \, du \\ J_{7}(p, q, s, m) &= \int_{0}^{1} \left[1 + h^{2} u^{2(p-1)} (1 - u^{p})^{2(q-1)} \right]^{-1/2} u^{m} (1 - u^{p})^{s-3} \log u \, du \\ h^{2} &= \left[\frac{b\alpha}{a\beta} \right]^{2} \text{ and } p, r \geq 1, q, s, m \geq 0 \end{split}$$

with

$$2^{2} = \left(\frac{b\alpha}{a\beta}\right)^{2}$$
 and p, $r \ge 1$, q, s, $m \ge 0$.

Then the equations used in the calculation of v, w and their derivatives can be expressed by Eqs. (3.33) as

$$\begin{aligned} \mathbf{v} &= \frac{2 \pi a b^2}{V_{\min}} J_1(\alpha, \frac{2}{\beta}) \\ \mathbf{v}_{\alpha} &= -\frac{2 \pi a b^2}{V_{\min}} \left(\frac{2}{\beta}\right) J_3(\alpha, \frac{2}{\beta}) \\ \mathbf{v}_{\beta} &= -\frac{2 \pi a b^2}{V_{\min}} \left(\frac{2}{\beta^2}\right) J_2(\alpha, \frac{2}{\beta}) \end{aligned}$$

$$\begin{split} & A = 4 \pi \text{ ab } J_4(\alpha, \frac{1}{\beta}, \frac{1}{\beta}) \\ & A_{\alpha} = 4 \pi \text{ ab } \left[\frac{h^2}{\alpha} J_5(\alpha, \frac{1}{\beta}, \frac{3}{\beta}) - \frac{1}{\beta} J_7(\alpha, \frac{1}{\beta}, \frac{1}{\beta} + 2, \alpha) \right. \\ & + h^2 J_7(\alpha, \frac{1}{\beta}, \frac{3}{\beta} + 1, 2\alpha - 2) - h^2 (\frac{2}{\beta} - 1) J_7(\alpha, \frac{1}{\beta}, \frac{3}{\beta}, 3\alpha - 2) \right] \\ & A_{\beta} = -4 \pi \text{ ab } \left[\frac{h^2}{\beta} J_5(\alpha, \frac{1}{\beta}, \frac{3}{\beta}) + \frac{1}{\beta^2} J_6(\alpha, \frac{1}{\beta}, 1, \frac{1}{\beta} + 2) \right. \\ & + 2 \left(\frac{h}{\beta} \right)^2 J_6(\alpha, \frac{1}{\beta}, \alpha, \frac{3}{\beta}) \right] \\ & A_a = \text{ ab } J_1(\alpha, \frac{1}{\beta}) \\ & (A_a)_{\alpha} = \text{ ab} (-\frac{1}{\beta}) J_3(\alpha, \frac{1}{\beta}) \\ & (A_a)_{\beta} = \text{ ab} \left(-\frac{1}{\beta^2} \right) J_2(\alpha, \frac{1}{\beta}) \\ & L = a J_4(\alpha, \frac{1}{\beta}, 0) \\ & L_{\alpha} = a \left[\frac{h^2}{\alpha} J_5(\alpha, \frac{1}{\beta}, \frac{2}{\beta}) + h^2 J_7(\alpha, \frac{1}{\beta}, \frac{2}{\beta}, 2\alpha - 2) \\ & - \frac{h^2}{\beta} J_7(\alpha, \frac{1}{\beta}, \frac{2}{\beta}, 3\alpha - 2) \right] \\ & L_{\beta} = -a \left[\frac{h^2}{\beta} J_5(\alpha, \frac{1}{\beta}, \frac{2}{\beta}) + \frac{h^2}{\beta^2} J_6(\alpha, \frac{1}{\beta}, \alpha, \frac{2}{\beta}) \right] \end{split}$$

-

NUMERICAL INTEGRATION

The analytical expressions for the integrals in Eqs.(3.33) are not available except for J_1 , J_2 and J_3 which may be expressed in terms of gamma functions and the derivatives of gamma functions, the psi functions. Since the above functions also involve series expansions or numerical integration , all of the integrals in Eqs.(3.33) are evaluated numerically using Simpson's Rule. In this process, special consideration is given to improper integrals of the following two types.

$$I(\epsilon) = \int_{0}^{\epsilon} f(\xi) \xi^{\delta} d\xi \qquad \delta > -1 \qquad (3.35)$$

$$K(\epsilon) = \int_{0}^{\epsilon} f(\xi) \xi^{\delta} \log \xi d\xi \qquad \delta > -1 \qquad (3.36)$$

with $f(\xi)$ continuous in the interval $0 \le \xi \le \epsilon$. For ϵ small enough, replace $f(\xi)$ with a parabola

$$f(\xi) = b_0 + b_1 \left(\frac{\xi}{\epsilon}\right) + b_2 \left(\frac{\xi}{\epsilon}\right)^2$$
(3.37)

where

$$b_0 = f(0)$$

$$b_1 = 4 f(\frac{\epsilon}{2}) - f(\epsilon) - 3 f(0)$$

$$b_2 = 2 f(\epsilon) - 4 f(\frac{\epsilon}{2}) + 2 f(0)$$

Then the improper integrals $I(\epsilon)$ and $K(\epsilon)$ can be approximated as

$$I(\epsilon) = \int_{0}^{\epsilon} \left[b_{0} + b_{1} \left(\frac{\xi}{\epsilon} \right) + b_{2} \left(\frac{\xi}{\epsilon} \right)^{2} \right] \xi^{\delta} d\xi$$
$$= \frac{\epsilon^{\delta+1}}{\delta+1} \left[b_{0} + \frac{\delta+1}{\delta+2} b_{1} + \frac{\delta+1}{\delta+3} b_{2} \right]$$
(3.38)

$$K(\epsilon) = \int_{0}^{\epsilon} \left[b_{0} + b_{1} \left(\frac{\xi}{\epsilon} \right) + b_{2} \left(\frac{\xi}{\epsilon} \right)^{2} \right] \xi^{\delta} \log \xi d\xi$$
$$= \frac{\epsilon^{\delta+1}}{\delta+1} \left\{ \log \epsilon \left[b_{0} + \frac{\delta+1}{\delta+2} + b_{1} + \frac{\delta+1}{\delta+3} + b_{2} \right] - \frac{1}{\delta+1} \left[b_{0} + \left(\frac{\delta+1}{\delta+2} \right)^{2} + b_{1} + \left(\frac{\delta+1}{\delta+3} \right)^{2} + b_{2} \right] \right\}$$

So the improper integrals L to L listed in Eqs. (3.33) can be expressed in (3.39)

Therefore the improper integrals J_2 to J_7 listed in Eqs.(3.33) can be expressed in terms of $I(\epsilon)$, $K(\epsilon)$ and a proper integral. They are derived as follows.

$$J_{2}(p, q) = \int_{0}^{1-\eta} (1 - u^{p})^{q} \log (1 - u^{p}) du + \int_{1-\eta}^{1} (1 - u^{p})^{q} \log (1 - u^{p}) du$$

Let $\xi = 1 - u^p$

then

$$du = -\frac{1}{p} (1 - \xi)^{(1-p)/p} d\xi$$

ar

nd
$$J_2(p, q) = \int_0^{1-\eta} (1-u^p)^q \log(1-u^p) du + \frac{1}{p} \int_0^{1-(1-\eta)^p} (1-\xi)^{(1-p)/p} \xi^q \log\xi d\xi$$

Using Eq. (3.39) along with the definitions of Eq. (3.37), J_2 is approximated as

$$J_{2}(p, q) = \int_{0}^{1-\eta} (1 - u^{p})^{q} \log (1 - u^{p}) du + \frac{1}{p} K(\epsilon) \begin{vmatrix} * & (3.40) \\ \epsilon = 1 - (1 - \eta)^{p} \\ f(\xi) = (1 - \xi)^{(1-p)/p} \\ \delta = q \end{vmatrix}$$

In a similar manner, by the approximations of $I(\epsilon)$ and $K(\epsilon)$, other integrals yield;

$$J_{3}(p, q) = \int_{\epsilon}^{1-\eta} (1 - u^{p})^{q-1} u^{p} \log u \, du + \frac{1}{p^{2}} I(\epsilon) \begin{vmatrix} \epsilon = 1 - (1-\eta)^{p} \\ f(\xi) = (1-\xi)^{1/p} \log (1-\xi) \\ \delta = q-1 \end{vmatrix} \stackrel{\epsilon = \epsilon}{\epsilon} f(\xi) = (1-\xi^{p})^{q-1} \\ \delta = p$$

* This notation indicates that the integral is evaluated at the indicated values of ϵ , f(ξ) and δ .

$$\begin{split} J_{4}(p, q, s) &= \int_{0}^{1-\eta} (1 - u^{p})^{s} \left[1 + h^{2} u^{2(p-1)} (1 - u^{p})^{2(q-1)} \right]^{1/2} du \\ &+ \frac{h}{p} I(\epsilon) \left| \begin{array}{c} \epsilon = 1 - (1 - \eta)^{p} \\ f(\xi) &= \left[\frac{1}{h^{2}} (1 - \xi)^{2(1 - p)/p} \xi^{2(1 - q)} + 1 \right]^{1/2} \\ \delta = q + s - 1 \end{array} \right] \\ J_{5}(p, q, s) &= \int_{0}^{1-\eta} \left[1 + h^{2} u^{2(p-1)} (1 - u^{p})^{2(q-1)} \right]^{-1/2} u^{2(p-1)} (1 - u^{p})^{s-2} du \\ &+ \frac{1}{p} I(\epsilon) \right| \\ \epsilon &= 1 - (1 - \eta)^{p} \\ f(\xi) &= \left[\xi^{2(1 - q)} + h^{2} (1 - \xi)^{2(p-1)/p} \right]^{-1/2} (1 - \xi)^{(p-1)/p} \\ \delta &= s - q - 1 \end{split}$$

$$J_{6}(p, q, r, s) = \int_{0}^{1-\eta} \left[1 + h^{2} u^{2(p-1)} (1 - u^{p})^{2(q-1)} \right]^{-1/2} u^{2(r-1)} (1 - u^{p})^{s-2} \\ &\log (1 - u^{p}) du \end{split}$$

$$\begin{array}{c|c} +\frac{1}{p} \ K(\epsilon) \\ \epsilon = 1 - (1 - \eta)^{p} \\ f(\xi) = \left[\xi^{2(1 - q)} + h^{2} (1 - \xi)^{2(p - 1)/p}\right]^{-1/2} (1 - \xi)^{(2r - p - 1)/p} \\ \delta = s - q - 1 \end{array}$$

$$J_{7}(p, q, s, m) = \int_{\epsilon}^{1-\eta} \left[1 + h^{2} u^{2(p-1)} (1-u^{p})^{2(q-1)}\right]^{-1/2} (1-u^{p})^{s-3} u^{m} \log u \, du$$

$$+ K(\epsilon) \left| \begin{array}{c} \epsilon = \epsilon \\ f(\xi) = \left[(1-\xi^{p})^{2(1-q)} + h^{2} \xi^{2(p-1)} \right]^{-1/2} (1-\xi^{p})^{s-q-2} \\ \delta = m \end{array} \right.$$

$$+ \frac{1}{p^{2}} I(\epsilon) \left| \begin{array}{c} \epsilon = 1 - (1-\eta)^{p} \\ f(\xi) = \left[\xi^{2(1-q)} + h^{2} (1-\xi)^{2(p-1)/p} \right]^{-1/2} (1-\xi)^{(m+1-p)/p} \\ \frac{1}{\xi} \log (1-\xi) \\ \delta = s - q - 1 \end{array} \right|$$

The integrals J_1 to J_7 therefore involve only proper integrals; thus numerical integration by Simpson's rule can be applied. The FORTRAN programs for the evaluation of J_1 through J_7 by means of a digital computer are written in subfunction form as listed in Appendix B.

NUMERICAL COMPUTATIONS

Several characteristics of the design problem have to be defined before the numerical iterations can be performed. One is the magnitude of the required values for V_{\min} and W_{\max} , the others include the weighting functions λ and μ .

1. The Ranges of the Volumes and Weights of Shells

Among the shells of revolution which may be generated by revolving the meridian curve, Eq. (3.1), about the x-axis, the range of shapes of interest lie between the cylindrical shell for which the exponents α and β are both large, and the conical shell for which the exponents α and β both equal unity. The volume of the cylinder with radius b and length 2a is $V_{cyl} = 2 \pi ab^2$, and the volume of the double cone, having apexes at -a and at +a, with corresponding base diameter, 2b, is $V_{cone} = \frac{2}{3} \pi ab^2$. If the required minimum volume V_{min} is written as $V_{min} = C_1 (2\pi ab^2)$, then C_1 must lie between 1/3 and 1.

In order to determine the weight for the two limiting cases, the thickness variation must be considered as well as the surface area. The surface areas for the cylindrical and conical shells are

$$A_{cyl} = 4 \pi ab \left[1 + \frac{1}{2} \left(\frac{b}{a} \right) \right]$$
$$A_{cone} = 4 \pi ab \left[\frac{1}{2} \sqrt{1 + \left(\frac{b}{a} \right)^2} \right]$$

Using Eqs. (3.23) and (3.24), the thicknesses required for the shell of cylindrical type, based on two different failure criteria, are expressed as

$$t_1 = \frac{1}{1 + (\frac{b}{a})} \quad \left(\frac{p_o}{\sigma_o}\right) b$$
$$t_2 = \frac{1}{2} \left(\frac{p_o}{\sigma_o}\right) b$$

therefore

t

$$= \begin{cases} \frac{1}{2} \left(\frac{p_{o}}{\sigma_{o}} \right) b & \text{for } \left(\frac{b}{a} \right) \ge 1 \\ \\ \frac{1}{1 + \left(\frac{b}{a} \right)} \left(\frac{p_{o}}{\sigma_{o}} \right) b & \text{for } \left(\frac{b}{a} \right) < 1 \end{cases}$$

Similarly, the thicknesses required for the conical type shell are

$$t_1 = \frac{1}{2} \quad \frac{1}{\sqrt{1 + (\frac{b}{a})^2}} \quad \begin{pmatrix} \frac{p_o}{\sigma_o} \end{pmatrix} \quad b$$

$$t_2 = \frac{1}{2} \left(\frac{p_o}{\sigma_o} \right) b$$

Since $\frac{1}{\sqrt{1 + (\frac{b}{a})^2}} \le 1$ for any value of $(\frac{b}{a})$, it follows that $t = \frac{1}{2} \left(\frac{p_o}{\sigma_o} \right) b$ for any ratio $(\frac{b}{a})$.

Then the weights of the cylindrical and the conical shells become

$$W_{cyl} = \begin{cases} \frac{1}{2} \left[1 + \frac{1}{2} \left(\frac{b}{a}\right)\right] \left[4 \pi ab^{2} \left(\frac{p_{o}}{\sigma_{o}}\right) \rho g\right] & \text{for } \frac{b}{a} \ge 1 \\ \\ \frac{1}{1 + \left(\frac{b}{a}\right)} \left[1 + \frac{1}{2} \left(\frac{b}{a}\right)\right] \left[4 \pi ab^{2} \left(\frac{p_{o}}{\sigma_{o}}\right) \rho g\right] & \text{for } \frac{b}{a} < 1 \end{cases}$$
(3.42)
$$W_{cone} = \frac{1}{4} \sqrt{1 + \left(\frac{b}{a}\right)^{2}} \left[4 \pi ab^{2} \left(\frac{p_{o}}{\sigma_{o}}\right) \rho g\right]$$

By writing the primary required limiting weight as

$$W_{\text{max}} = C_2 \left[4 \pi ab^2 \left(\frac{p_o}{\sigma_o} \right) \rho g \right]$$

then C_2 has to be in the range

$$\frac{1}{4} \sqrt{1 + \left(\frac{b}{a}\right)^2} \le C_2 \le \frac{1}{2} \left[1 + \frac{1}{2} \left(\frac{b}{a}\right)\right] \text{ for } \left(\frac{b}{a}\right) \ge 1$$

$$\frac{1}{4} \sqrt{1 + \left(\frac{b}{a}\right)^2} \le C_2 \le \frac{1}{1 + \left(\frac{b}{a}\right)} \left[1 + \frac{1}{2} \left(\frac{b}{a}\right)\right] \text{ for } \left(\frac{b}{a}\right) < 1$$

2. Weighting Functions λ and μ

The functions λ and μ which define the relative importance of the variation of the volume and the weight of the shells, are preassigned according to the design criterion. Any functions in terms of V and W can be assigned in the problem. One such set of functions is defined as

$$\lambda_{1} = \frac{(V_{cyl} - V)^{P}}{(V - V_{min})^{q}}, \qquad \mu_{1} = \frac{W^{m}}{(W_{max} - W)^{n}}$$
(3.43)

The shapes of the functions in Eq. (3.43) appear in Fig. 1, for p = q = m = n = 1. From the characteristics of the functions λ and μ , one can predict that when the volume is close to V_{min} or when the weight is close to W_{max} , a small increment of V or W will produce a large change of dF as defined in Eq. (3.6). If dF is considered as the slope of a surface F, then the surface has a positive slope along the edge where V is close to V_{min} and has a negative slope along the edge where W is close to W_{max} . Thus it follows that there must exist a maximum value of F, that is dF = 0, in the assigned range V > V_{min} and W < W_{max} .

The functions λ and μ may also be defined as

$$\lambda_{2} = \frac{\lambda_{1}}{\sqrt{\lambda_{1}^{2} + \mu_{1}^{2}}} \qquad \mu_{2} = \frac{\mu_{1}}{\sqrt{\lambda_{1}^{2} + \mu_{1}^{2}}} \qquad (3.44)$$

where λ_1 and μ_1 are obtained from Eq. (3.43). If one divides λ_1 and μ_1 by $\sqrt{\lambda_1^2 + \mu_1^2}$, the magnitude of λ_2 and μ_2 will be limited to the range of 0 to 1. The ratios λ_2/μ_2 and λ_1/μ_1 , remain the same. The characteristics of the functions are as shown in Fig. 2; the values of λ_2 and μ_2 outside the range of V_{\min} and W_{\max} are arbitrary set equal to 0 and to 1 respectively.

Another form of λ and μ consists of straight lines, which define a linear variation of V and W as

$$\mu_{3} = \frac{V_{cyl} - V}{V_{cyl} - V_{min}} \qquad \mu_{3} = \frac{W}{W_{max}}$$
(3.45)

The above three definitions of λ and μ are applied in the numerical examples of this report. Subroutine programs for the calculation of λ and μ are attached to the main iteration program as listed in Appendix B.

3. Numerical Examples

The functions of λ and μ for the first example are chosen as in Fig. 1, that is

$$\lambda = \frac{V_{cyl} - V}{V - V_{min}}, \qquad \mu = \frac{W}{W_{max} - W}$$

Let the required minimum volume of the shell be 0.6 of the volume of cylindrical shell, thus $V_{min} = 0.6 (2 \pi ab^2)$, and let the required maximum weight be 0.8 that of the cylindrical shell under the same load condition. Since the thickness required for the cylindrical shell is dependent on the ratio of b/a, the weights for the cylindrical shell is dependent on the ratio of b/a, the weights for the cylindrical shells with different ratios b/a are given by Eq. (3.42) as

$$W_{cy1} = \begin{cases} 0.75\\ 1.00\\ 0.90 \end{cases} \quad (4 \pi \rho g p_0 a b^2 / \sigma_0) \quad \text{for b/a} = 1.0 \\ (4 \pi \rho g p_0 a b^2 / \sigma_0) \quad \text{for b/a} = 2.0 \\ \text{for b/a} = 0.25 \end{cases}$$

therefore the values of W_{max} are chosen as $0.6(4\pi\rho gp_0 ab^2/\sigma_0)$, $0.8(4\pi\rho gp_0 ab^2/\sigma_0)$ and $0.72(4\pi\rho gp_0 ab^2/\sigma_0)$ for the ratios b/a = 1.0, 2.0, and 0.25 respectively.

With all the requirements set, the iterative calculations are performed with the aid of digital computers. The FORTRAN programs for the iteration procedure are listed in Appendix B.

Choosing the starting values $\alpha = 1.5$, $\beta = 1.5$ with the fineness ratio a/b = 1.0, and the limiting value $\eta_0 = 0.1$, $k_0 = 0.3$, results in the output listed in Table I. From steps 1 to 7 in the Table, the results listed are presented for each iteration; from step 8 on, the results are presented for every other iteration. From these results it is seen that the values of α and β increase rapidly in each of the first six iterations and then change slowly. The same pattern is apparent for the slopes F_{α} and F_{β} .

Table II shows the iteration results with the same parameters as in Table I, but with the starting condition $\alpha = 2.0$, $\beta = 3.0$. The results in steps 1 to 8 are listed for each iteration while after step 8, they are listed for every fourth iteration. The iterated values of α and β decrease rapidly in the first three steps and then change slowly.

The results in Tables I and II, indicate that the shape defined by $\alpha = 1.5$, $\beta = 1.5$ lies on one side of the ridge, Fig. 3, while the shape defined by $\alpha = 2.0$, $\beta = 3.0$ lies on the other side of the ridge. During the iteration process, the successively improving values of α and β climb to the ridge rapidly according to the path of steepest ascent, and then progress slowly along the ridge due to the small variation of slope along the ridge. The phenomena observed in the above results may be verified or described more clearly by the exact integration of the function dF of Eq. (3.6) using the assigned functions λ and μ . Rewriting the weighting functions λ and μ in dimensionless terms v and w, one obtains

$$\lambda = \frac{c - v}{v - 1} \qquad \mu = \frac{w}{1 - w}$$

where

Then $dF = \frac{c - v}{v - 1} dv - \frac{w}{1 - w} dw$

 $c = \frac{V_{cyl}}{V_{min}}$

which, after integration, yields

 $F = (c - 1) \log (v - 1) + \log (1 - w) - (v + w)$

The function F is in terms of v and w, which can be represented by the integrals with parameters α and β . The relative variation of F with respect to α and β is plotted as a three dimensional surface in Fig. 3. The surface has the shape of a mountain range with the projection of the ridge shown in the α - β plane in Fig. 3. The peak of the ridge is located near the point $\alpha = 2.65$, $\beta = 1.55$.

Changing the values of V_{\min} , W_{\max} and the reciprocal of fineness ratio, b/a, results in little change in the shape of the surface F, but does produce a slight shift in the location of the ridge. The projections of the ridges on the $\alpha - \beta$ plane, with different combinations of V_{\min} , W_{\max} , and b/a, are plotted in Fig. 4. The shift in the ridge is in the same sense as the change in V_{\min} or in W_{\max} .

The results in Tables III and IV show the iterative calculations for the case $V_{min} = 0.6 (2 \pi ab^2)$, $W_{max} = 0.8 (4 \pi \rho g p_0 ab^2 / \sigma_0)$ with the ratio b/a = 2.0 and $k_0 = 0.3$. While the initial values for α and β are different in Tables III and IV, it is noted that they converge to the same values of α and β after successive iterations.

As a second example, λ_2 and μ_2 of Fig. 2 are chosen as the weighting functions. The results of each iterated calculation with three different starting values are listed in Table V. The preassigned values for computations are $V_{min} = 0.6 (2 \pi ab^2)$, $W_{max} = 0.6 (4 \pi \rho g p_0 ab^2 / \sigma_0)$ and b/a = 1.0. The values

of α and β reach the ridge rapidly after several iterations regardless of the starting point.

Table VI gives the iterated results for the weighting functions λ_3 and μ_3 , which vary linearly with V and W, as defined by Eq. (3.45). The other preassigned values for computations are the same as for Table V. The results indicate that both the slopes F_{α} and F_{β} are within the limit 0.005 after ten iterations for all of the different starting values.

Since the iteration procedure is controlled by the slope of the function F, the rate of convergence is mainly dependent on the weighting functions λ and μ . For the currently assigned functions, the results in the above tables indicate that the values α and β converge rapidly to the region where the ordered pair (α , β) lies near the projection of the ridge and then change slowly along the ridge. Due to the small variation of the slope along the ridge, any point located on the projection of the ridge on the $\alpha - \beta$ plane constitutes a good shape with respect to volume and weight.

As another example, the functions λ and μ may be considered as constants. In this case, the problem becomes one of determining the relative maximum of the function F = v - w. Since the variation of the thickness is very small due to the change of values α , β , a shape which is nearly optimum may be achieved by assigning a specific value of volume in determining the values of α , β for minimum shell surface or by assigning a specific value of surface area in determining the values of α , β for maximum volume.

The shapes to fulfill the above requirement can be determined with the aid of data from previous reports [1, 2]. The surface in Fig. 5 represents the volume variation with respect to α and β . The heavy curve on this surface represents the volumes of shells for which the surface area is equal to a preassigned value. From the projection of this curve on a vertical plane, the values of α and β for the maximum volume for the defined surface area can be established. In a similar manner, the surface in Fig. 6 represents the area variation with respect to α and β . The heavy curve on the surface represents the areas of shells for which the shell volume is equal to a preassigned value. The projection of this curve on a vertical plane indicates the area variation among shells having a constant volume.

APPENDIXES

A. Iteration Procedures with Varying Shell Length

Similar to the Eqs. (3.2) and (3.3), the volume and weight of the shells of revolution may be taken as the functions of three parameters α , β and a,

$$V_{xa} = V_{xa} (\alpha, \beta, a)$$
$$W = \rho g A (\alpha, \beta, a) t (\alpha, \beta, a)$$

Here the shape requirements to be fulfilled for the shell are

$$V_{xa} \ge V_{min}$$
 $W \le W_{max}$ $a \le a_{max}$

In this case the dimensionless forms are defined as

$$v = \frac{V_{xa}}{V_{min}}$$
 $w = \frac{W}{W_{max}}$ $\ell = \frac{a}{a_{max}}$

and the differential of a function is formed as

where λ , μ and ν are the functions defining the relative importance of increases in volume and decreases in weight and length. The differential dF also can be written as

$$dF = F_{\alpha} d\alpha + F_{\beta} d\beta + F_{\ell} d\ell$$

with

$$F_{\alpha} = \lambda v_{\alpha} - \mu w_{\alpha}$$

$$F_{\beta} = \lambda v_{\beta} - \mu w_{\beta}$$

$$F_{\ell} = \lambda v_{\ell} - \mu w_{\ell} - v$$

The iteration steps will then follow path of steepest ascent, as defined by

$$d\alpha : d\beta : d\ell = F_{\alpha} : F_{\beta} : F_{\ell}$$

The iterative procedure is repeated until F_{α} , F_{β} and F_{ℓ} are essentially zero.

B. FORTRAN Programs

1. Programs for FUNCTIONS FJ1 through FJ7

Since the integrals J_1 through J_7 listed in Eqs. (3.33) appear in the calculations of the main iteration program many times, they are computed in separate FUNCTIONS attached to the main program. Simpson's rule is used to evaluate the above integrals with the approximation techniques discussed in the section on Numerical Integration.

Among the input arguments for the FUNCTION programs, the values P, Q, R, S and T are the exponents in the integrals. They are dependent on the values of α and β . The quantities ETAI and EPS are two small numbers assigned in the calculation of the two improper integrals $I(\epsilon)$ and $K(\epsilon)$ of Eqs. (3.35) and (3.36). The value FK2 represents the term $\left(\frac{b\alpha}{a\beta}\right)^2$ and the value ACC is the accuracy required for the relative difference between two successive approximations in the Simpson's rule integration routine. In the previous numerical examples, the value assigned to ETAI and to EPS is 0.01 while the value assigned to ACC is 0.0001.

2. Program for SUBROUTINE FMULAM

The SUBROUTINE FMULAM is written to compute either the values λ_1 , μ_1 , as Eq. (3.43) or the values λ_2 , μ_2 as Eq. (3.44), which is controlled by the number NC. The outputs defined by FLAM and FMU represent λ_1 and μ_1 for NC = 1 and λ_2 and μ_2 for NC=2. The input arguments P, Q, FM and FN are the same as the exponents p, q, m and n of Eq. (3.43).

3. The Main Iteration Program

The main purpose of the program is to compute the increments of $\Delta \alpha$ and $\Delta \beta$ along the path of the steepest ascent from the current assigned values α and β . The computations are repeated for the new calculated α and β until they reach a point where the absolute values F_{α} and F_{β} , as in Eqs. (3.7) and (3.8), are less than a preassigned small number QEPS.

The input data of FP, FQ, FM, FN and NC listed on the first data card are supplied for the calculation of functions λ and μ . The constants EPS, ETAI and ACC on the second data card are the numbers assigned to the FUNCTIONS J_1 through J_7 in order to compute the integrals. The values PO and SIGO represent internal pressure p_0 and the yield stress σ_0 and are used to calculate the thickness t. Input data ETAO and FKV are assigned to limit the step size of α and

 β in each iteration, and represent η_0 and k_0 in Eqs. (3.14) and (3.13). The two integers NRVWP and NRAB are the number of the sets of V_{\min} , W_{\max} and the number of sets of the ratio BOA (b/a) to be calculated in the program.

The input values VMIN and WMAX are two dimensionless numbers which represent the preassigned allowable minimum volume and maximum weight. The true value of the minimum volume is VMIN \cdot (2 π ab²) and the true value of maximum weight is WMAX \cdot (4 $\pi \rho g p_0 ab^2 / \sigma_0$).

For the output, the results of each iteration are printed using the symbols DA, DB, ATIL and BTIL to represent $\Delta \alpha$, $\Delta \beta$, F_{α} and F_{β} respectively.

```
FORTRAN IBM
$
$
       PUNCH OBJECT
       GO
$
    READ INPUT TAPE 7, 1, FP, FQ, FM, FN, NC, EPS, ETAI, ACC, NRVWP
1 FORMAT (4F15.5, I10 / 3E20.8 / I1C)
READ INPUT TAPE 7, 2, PU, SIGG, QEPS, ETAO, FKV
                                                                                SHELL001
                                                                                SHELL002
                                                                                SHELL 003
    2 FORMAT (2E20.8/ 3F20.5)
                                                                                SHELL004
                                                                                SHELL005
    3 DO 69 INRVWP = 1, NRVWP
    4 READ INPUT TAPE 7, 5, VMIN, WMAX, NRAB
                                                                                SHELL006
                                                                                SHELL007
    5 FORMAT ( 2E20.8 /110)
    9 DO 50 INRAB = 1, NRAB
                                                                                SHELL008
   10 READ INPUT TAPE 7, 11, ALPHA, BETA, BOA
                                                                                SHELL009
                                                                                SHELL010
   11 FORMAT ( 3E20.8)
      WRITE OUTPUT TAPE 6, 12, VMIN, WMAX, BOA
                                                                                SHELL011
   12 FORMAT (8H1VMIN = ,F7.3,2X,7HWMAX = ,F7.3,3X, 4HBOA=, F6.3, //)
                                                                                SHELL012
                                                                                SHELL013
       NCONT =0
                                                                                SHELL014
С
    TO LIMIT ALPHA AND BETA BOTH LARGER THAN ONE
                                                                                SHELL015
С
                                                                                 SHELL016
C.
                                                                                 SHELLO17
   14 IF (ALPHA - 1.0) 15, 17, 17
                                                                                SHELL018
   15 \text{ ALPHA} = 1.0
   17 IF (BETA - 1.0) 18, 19, 19
                                                                                 SHELL019
                                                                                 SHELL020
   18 \text{ BETA} = 1.0
   19 FK2 = (BOA*ALPHA/BETA)**2
                                                                                 SHELL021
                                                                                 SHELL022
       CNOB = 1.0/BETA
        TWCB = 2.0/BETA
                                                                                SHELL023
        THEB = 3.0/BETA
                                                                                 SHELL024
       NCONT = NCONT +1
                                                                                 SHELL025
                                                                                 SHELL026
С
    TO DETERMINE THE VALUE OF T= T1 OR T2
                                                                                 SHELL027
С
                                                                                 SHELL028
С
       AR= FJ1(ALPHA, ONOB, ACC)
                                                                                 SHELL029
       SL = FJ4(ALPHA, ONOB, C.O, FK2, ETA1, ACC)
                                                                                 SHELL030
                                                                                 SHELL031
       RR = AR / SL
                                                                                 SHELL032
       IF ( RR-0.5 ) 20, 20, 21
                                                                                 SHELL033
С
    T2 LARGER THAN T1
                                                                                 SHELL034
C
                                                                                 SHELL035
   20 T = 0.5 * PO/SIGO
       TA = G_{\bullet}
                                                                                 SHELL036
                                                                                 SHELL037
       TB = C.
       GO TO 24
                                                                                 SHELL038
                                                                                 SHFLL039
С
                                                                                 SHELL040
    T1 LARGER THAN T2
C.
                                                                                 SHELL041
   21 T = RR *PC /SIGO
       ARA= -(CNCR)*FJ3(ALPHA,ONOB,CPS,ETAI,ACC)
                                                                                 SHELL042
       ARB= -(1.0/(BCTA**2))*FJ2(ALPHA, ONOB, ETAI, ACC)
                                                                                 SHELL043
       TE = FJ5(ALPHA, CNOB, TWOB, FK2, ETAI, ACC)
                                                                                 SHELL044
       SLA = FK2*(FJ7(ALPHA,ONUB,TWOB,2.*(ALPHA-1.),FK2,EPS,ETAI,ACC) -
                                                                                 SHELL045
     1 FJ7(ALPHA,CNOR,TWO0,3.*ALPHA-2.,FK2,EPS,ETA1,ACC)/BCTA +
2 TE/ALPHA)
                                                                                 SHELL046
                                                                                 SHELL047
       SLB = -(FK2/(BETA**2))*(FJ6(ALPHA,ONOB,ALPHA,TWOB,FK2,ETAI,ACC) + SHELL048
                                                                                 SHELL049
      1
        8ETA+TE)
       TA = (PG/SIGO) \bullet (ARA-AR*SLA/SL) / SL
                                                                                 SHELL050
       TB = (PU/SICO) • (ARB- AR • SLB/ SL) /SL
                                                                                 SHELL051
   24 WRITE OUTPUT TAPE 6, 25, ALPHA, BETA, AR, SL, RR, T, TA, TB
                                                                                 SHELL052
                                                                                 SHELL053
   25 FORMAT ( 1HC, 5X, 8E12.6)
```

```
SHELL 054
C
С
    TO CALCULATE V. W. AND THEIR DERIVATIVES
                                                                               SHELL055
C.
                                                                               SHELL056
      SU= FJ4(ALPHA, ONOB, ONOB, FK2, ETAI, ACC)
                                                                               SHEEL 057
      TE = FK2*FJ5(ALPHA, ONCB, THOB, FK2, ETAI, ACC)
                                                                               SHELL 058
     SUA= TE/ALPHA - FJ7(ALPHA, GNUB, DNOB+2. , ALPHA, FK2, EPS, ETA1, ACC) SHELL059
1 /BETA + FK2*FJ7(ALPHA, ONOB, THOB+1.0, 2.*(ALPHA-1.), FK2, EPS, SHELL060
        ETAI,ACC) - FK2+(TWOB-1.)+FJ7(ALPHA,ONOB,THOU,3.+ALPHA-2.,
                                                                               SHELL061
         FK2, EPS, ETAI, ACC)
                                                                               SHELL062
     3
      SUB= -(1./(BETA**2))*(FJ6(ALPHA,ONOB,1.,ONOB+2.,FK2,ETAI,ACC) +
                                                                               SHELL063
     1 2.*FK2*FJ6(ALPHA,ONOB,ALPHA,THOB,FK2,ETAI,ACC) + BETA*TE)
                                                                               SHELL064
      V = FJ1(ALPHA, TWOB, ACC)
                                                                               SHELL065
      VA = -(TWCB) * FJ3(ALPHA, TWOB, EPS, ETAI, ACC)
                                                                               SHELLC66
      VB = - (2.0/(BETA**2))*FJ2(ALPHA, TWOB, ETAI, ACC)
                                                                               SHELL067
      W = SU *T
                                                                               SHELL068
      WA = SU * TA + T * SUA
                                                                               SHELL069
      WB = SU * TB + T * SUB
                                                                               SHELL070
C
                                                                               SHELL071
    TO FIND THE VALUES OF MU AND LAMDA
                                                                               SHELL 072
C
С
                                                                               SHELL073
      CALL FMULAM ( FP, FQ, FM, FN, VMIN, WMAX, V, W, FMU, FLAM, NC )
                                                                               SHELL074
С
                                                                               SHELL075
      WRITE OUTPUT TAPE 6, 26, V, VA, VB, W, WA, NB, FMU, FLAM
                                                                               SHELL076
   26 FORMAT (10X, 8F11.6)
IF (FMU) 50, 30, 30
                                                                               SHELL077
                                                                               SHELL078
   30 IF (FLAM) 50, 31, 31
                                                                               SHELL079
                                                                               SHELL080
C
    TO CALCULATE FALPHA AND FBETA (THAT IS, ATIL AND BTIL)
С
                                                                               SHELL081
Ċ
                                                                               SHELL082
   31 ATIL = FLAM + VA/ VMIN - FMU + WA/ WMAX
                                                                               SHELL083
      BTIL = FLAM * VB/ VMIN - FMU • WB/ WMAX
                                                                               SHELL084
      ATILS = ( ATIL*VA + BTIL*VB ) /VMIN
                                                                               SHELL085
      BTILS = { ATIL*WA + BTIL*WB } / WMAX
                                                                               SHELL086
      VO = V/VMIN
                                                                               SHELL087
      hO = W/WMAX
                                                                               SHELLOBA
С
                                                                               SHELL089
    PROGRAM TERMINATES WHEN QQ LESS THAN QEPS
                                                                               SHELL090
С
С
                                                                               SHELL091
      QQ = SQRT (ATIL**2 + BTIL**2)
                                                                               SHELL092
      IF ( CQ-QEPS ) 48, 48, 35
                                                                               SHELL093
С
                                                                               SHELL094
С
    TO DETERMINE STEP SIZE, CONTROL ON FKAP
                                                                               SHELL095
С
                                                                               SHELL096
   35 FKAPS = ETAC / SQRT (ATILS**2 + BTILS**2)
                                                                               SHELL097
      IF (FKAPS - FKV) 36, 36, 37
                                                                               SHELL098
   36 FKAP = FKAPS
                                                                               SHELL099
      GO TO 4C
                                                                               SHELL100
   37 FKAP = FKV
                                                                               SHELL101
   40 DA = FKAP • ATIL
                                                                               SHELL102
      DB = FKAP + BTIL
                                                                               SHELL103
      WRITE OUTPUT TAPE 6, 42, ALPHA, BETA, DA, DS, VO, WG, FKAP, ATIL, SHELLIO4
     1 BTIL, ATILS, BTILS
                                                                               SHELL105
   42 FORMAT (6F9.5, 5E12.5)
                                                                               SHELL106
      ALPHA = ALPHA + DA
                                                                               SHELL107
      BETA = BETA + DB
IF ( NCCNT - 50
                                                                               SHEEL 108
                         ) 14, 50, 50
                                                                               SHELL109
   48 WRITE OUTPUT TAPE 6, 49, ALPHA, BETA, VO, WO, ATIL, BTIL, ATILS,
                                                                               SHELL110
        BTILS
     1
                                                                               SHELL111
   49 FORMAT ( 1H-, 8F13.5 /1H2 )
                                                                               SHELL112
   50 CONTINUE
                                                                               SHELL113
   69 CONTINUE
                                                                               SHELL114
      CALL SYSTEM
                                                                               SHELL115
      END
                                                                               SHELL116
```

FORTRAN IBM \$ ŝ PUNCH OBJECT SUBROUTINE FMULAM(P,Q,FM,FN,VMIN,WMAX,V,W,FMU,FLAM,NC) SUBEML01 SUBFML02 1 VV = V/VMIN2 WW = W/WMAXSUBFML03 2 WN - W/WMA 3 IF (VV - 1.0) 4, 4, 10 4 IF (WW - 1.0) 10, 5, 5 5 WRITE OUTPUT TAPE 6, 6, VMIN, WMAX, VV, WW SUBFML04 SUBFML05 SUBFML06 SUBFML07 6 FORMAT(7H VMIN = ,E12.6,8H WMAX = ,E12.6,6H V = ,E14.8,6H W = , SUBFML08 1E14.8,// 5X, 43HTHE PRIMARY REQUIREMENTS CANNOT BE REACHED) 7 FMU = -1.08 FLAM = -1.0 SUBFML09 SUBFML10 SUBFML11 9 RETURN SUBFML12 10 IF (V-1.0) 11, 5, 5 11 IF (VV - 1.0) 12, 12, 15 SUBFML13 $12 \, \text{FMU} = 0.0$ SUBFML14 SUBFML15 13 FLAM = 1.0 15 F (WW) 5, 5, 915 F (WW) 5, 5, 1616 F (WW - 1.0) 20, 17, 1717 FLAM = 0.0SUBFML16 SUBFML17 SUBFML18 SUBFML19 18 FMU = 1.0 SUBFML20 SUBFML21 19 RETURN 20 FLAM = ((1./VMIN - VV)**P)/ ((VV-1.)**Q) 21 FMU = (WW**FM)/((1.0 - WW)**FN) SUBFML22 SUBFML23 22 GO TO (23,26), NC 23 TEMP = SQRT(FLAM**2 + FMU**2) 24 FLAM = FLAM/TEMP SUBFML24 SUBFML25 SUBFML26 SUBFML27 25 FMU = FMU/TEMP 26 RETURN SUBFML28 SUBFML29 END

\$	FORTRAN IBM		
\$PUNCH	H DBJECT		
	FUNCTION FJ1(P,Q,ACC)	FJ1	01
1	$CDD = C \cdot O$	FJ1	02
2	INT = 1	FJ1	03
3	V = 1.0	FJ1	04
4	EVEN = 0.0	FJ1	05
	AREA1 = 0.0	FJ1	06
	IF (Q) 19, 5, 6	FJI	07
5	ENDS = 2.0	FJ1	80
	GO TO 7	FJ1	09
6	ENDS = 1.0	FJL	10
7	H = 1.0/V	FJl	11
8	ODD = EVEN + ODD	FJ1	12
9	X = H/2.	FJ1	13
10	$EVEN = C \cdot O$	FJ1	14
11	DO 13 I = 1, INT	FJI	15
12	EVEN = EVEN + ((1+0 - X**P)**Q)	FJ1	16
13	x = x + H	FJ1	17
14	AREA = (ENDS + 4.0 + EVEN + 2.0 + DDD) + H/6.0	FJ1	18
15	R = ABSF(AREA1/AREA - 1.0) - ACC	FJl	19
16	1F (R) 25, 25, 17	FJ1	20
17	IF (INT - 16384) 21, 19, 19	FJ1	21
18	FORMAT (23H J1(P,Q) NOT CONVERGENT)	FJ1	22
19	WRITE OUTPUT TAPE 6, 18	FJ1	23
20	CALL SYSERR	FJ1	24
21	AREAL = AREA	FJ1	25
22	INT = 2+INT	FJ1	26
23	$V = 2.0 \pm V$	FJ1	27
24	GO TO 7	FJ1	28
25	FJ1 = AREA	FJ1	29
26	RETURN	FJ1	30
	END	FJI	31

```
FORTRAN IBM
$PUNCH OBJECT
      FUNCTION FJ2(P.O. ETAI, ACC)
                                                                                 FJ2 01
    1 DP = P
E= 1.-(1.0-ETAI)**P
                                                                                 FJ2 02
                                                                                 FJ2 03
                                                                                 FJ2 04
      OME = 1.0 - ETAI
    3 DEL = 1.0 - 1.0/DP
                                                                                 FJ2 05
    5 F0 = 1.0
                                                                                 FJ2 06
    6 F1 = (1.0 - 0.5*E)**(-DEL)
                                                                                 FJ2 07
    7 F2 = (1.0 - E) ** (-DEL)
                                                                                 FJ2 08
    8 DQ = Q
                                                                                 FJ2 09
   9 A = 4.0 \pm F1 - F2 - 3.0 \pm F0
10 B = 2.0 \pm F2 - 4.0 \pm F1 + 2.0 \pm F0
                                                                                 FJ2 10
                                                                                 FJ2 11
   11 T1 = DQ + 1.0
                                                                                 FJ2 12
   12 T2 = DQ + 2.0
13 T3 = DQ + 3.0
                                                                                 FJ2 13
                                                                                 FJ2 14
   FJ2 15
     1 + B/(T3+T3)))/T1)+(E++T1)/(T1+DP)
                                                                                 FJ2 16
   15 ODD = 0.0
                                                                                 FJ2 17
   16 \text{ INT} = 1
17 \text{ V} = 1.0
                                                                                 FJ2 18
                                                                                 FJ2 19
   18 EVEN = 0.0
                                                                                 FJ2 20
     AREA1 = 0.0
                                                                                 FJ2 21
   19 ENDS = ((1.0 - OME**DP)**DQ)*ELOG (1.0 - OME**DP)
                                                                                 FJ2 22
   20 H = OME/V
                                                                                 FJ2 23
   21 \text{ ODD} = \text{EVEN} + \text{ODD}
                                                                                 FJ2 24
   22 X = H/2.0
                                                                                 FJ2 25
   23 EVEN = 0.0
                                                                                 FJ2 26
   24 DO 26 I = 1, INT
                                                                                 F.J2 27
   25 EVEN = EVEN + ((1.0 - X**DP)**DQ)*ELOG (1.0 - X**DP)
                                                                                 FJ2 28
   26 X = X + H
                                                                                 FJ2 29
   27 AREA = (ENDS + 4.0*EVEN + 2.0*0DD)*H/6.0
                                                                                 FJ2 30
   28 R = ABSF(AREA1/AREA - 1.0) - ACC
                                                                                 FJ2 31
   28 K = ADSTIANEALIANEA
29 IF (R) 38, 38, 30
30 IF (INT - 16384) 34, 31, 31
31 WRITE OUTPUT TAPE 6, 32
                                                                                 FJ2 32
                                                                                 FJ2 33
                                                                                 FJ2 34
   32 FORMAT (23H J2(P,Q) NOT CONVERGENT)
                                                                                 FJ2 35
   33 CALL SYSERR
                                                                                 FJ2 36
   34 AREA1 = AREA
                                                                                 FJ2 37
   35 INT = 2+INT
                                                                                 FJ2 38
   36 V = 2.0*V
                                                                                 FJ2 39
   37 GO TO 20
                                                                                 FJ2 40
   38 FJ2 = AREA + EN
                                                                                 FJ2 41
   39 RETURN
                                                                                 FJ2 42
      END
                                                                                 FJ2 43
```

.

\$PUNCH 08.JECT FJ3 01 I DP = P FJ3 02 2 D0 = C - 1.0 FJ3 03 3 TI = CP + 1.0 FJ3 03 3 TI = CP + 1.0 FJ3 03 5 TI = TI/(CP + 2.0) FJ3 04 4 T2 = TI/(CP + 3.0) FJ3 05 5 T3 = TI/(CP + 3.0) FJ3 07 7 E = EPS FJ3 09 9 FZ = (1.0 - E**DP)**D0 FJ3 10 10 A = 4.0*FI - FZ - 3.0*FU FJ3 11 11 B = 2.0*FZ - 4.0*FI + 2.0*F0 FJ3 11 12 D2EN = TELGO (E)*FC + T2*A + T3*B) - (FO + T2*T7*A + T3*T3*B)/TI)*FJ3 13 TL 12 D2EN = TELGO (E)*FC + T2*A + T3*B) - (FO + T2*T7*A + T3*T3*B)/TI)*FJ3 13 TL 13 DE = 1.0/DP FJ3 13 TL 14 T3 DEL = 1.0/DP FJ3 17 FJ3 17 15 T1 = CC + 1.0 FJ3 13 TL 16 T2 = TL/(CC + 2.0) FJ3 21 TJ 17 T3 = TL/(CC + 3.0) FJ3 23 TJ 22 18 F0 - 0 FJ3 23 TJ 22 FJ3 23 14 F (1.0 - C.5*E)*DEL)*ELGG (1.0 - 0.5*E) FJ3 23 ZJ 24 22 0.0*F2 - 4.0*FI + F2.0*FO FJ3 22	\$ FORTRAN IBM		
FUNCTION FJ3[P, C, EPS, ETAT, ACC) FJ3 01 1 DP = P F 5 T3 = CP + 1.0 FJ3 03 3 T1 = CP + 1.0 FJ3 04 4 T2 = TL/(DP + 2.0) FJ3 04 6 F0 = 1.0 FJ3 06 7 E = EPS FJ3 04 8 F1 = (1.0 - (G.>C)+DP)+*DQ FJ3 07 7 E = EPS FJ3 04 8 F1 = (1.0 - (G.>C)+DP)+*DQ FJ3 10 10 A = $4 \cdot 0 + F1 - F2 - 3 \cdot 0 + FU$ FJ3 11 11 B = $2 \cdot 0 + F2 - 4 \cdot 0 + T + 2 \cdot 2 \cdot 0 + FO$ FJ3 11 12 D2EN = (LUG (C)+(F0 + T2+A + T3+B) - (F0 + T2+T2+A + T3+T3+R)/T1)+(FJ3 13 12 E + TL)/T1 FJ3 12 12 D2EN = (LUG (C)+(F0 + T2+A + T3+B) - (F0 + T2+T2+A + T3+T3+R)/T1)+(FJ3 13 14 E + 1.0/DP FJ3 12 15 T1 = C + 1.0 FJ3 12 16 F1 = 1.0 - OWE+CP FJ3 12 17 T3 = TL/(CO + 3.0) FJ3 10 17 T3 = TL/(CO + 3.0) FJ3 12 19 F1 = ((1.0 - C)+C) FJ3 12 19 F1 = ((1.0 - C)+C) FJ3 12 19 F1 = ((1.0 - C)+C) FJ3 12 10 F1 = ((1.0 - C)+C) FJ3 12 11 F1 = ((1.0 - C)+C) FJ3 12 12 A = $4 \cdot 0 + F1 - F2 - 3 \cdot 0 + F0$ FJ3 23 21 A = $4 \cdot 0 + F1 - F2 - 3 \cdot 0 + F0$ FJ3 23 22 A F2 ((1.0 C) - E) FJ3 23 23 EN = EN + (F0 + T2+A + T3+B) (E+T1)/(T1+CP+DP) FJ3 26 F = EPS 24 OEF2 - C + 0 + D0)+(E + CDP)+ELOG (UME) FJ3 26 1 + ((1.0 - C + C + D))+*D0)+(E + CDP)+ELOG (UME) FJ3 26 1 + ((1.0 - C + C + D))+*D0)+(E + CDP)+ELOG (UME) FJ3 26 1 + ((1.0 - C + C + D))+*D0)+(E + CDP)+ELOG (UME) FJ3 26 1 + ((1.0 - C + C + D))+*D0)+(E + CD)+ELOG (UME) FJ3 26 1 + ((1.0 - C + C + D))+*D0)+(E + CD)+ELOG (UME) FJ3 26 1 + ((1.0 - C + C + D))+*D0)+(E + CD)+ELOG (UME) FJ3 30 26 ANR = 1 - C + 0 - C + DD)+*D0)+(E + CD)+ELOG (UME) FJ3 30 27 V = 1.0 FJ3 30 28 EVEN = 0.0 FJ3 33 29 AREAI = 0.0 FJ3 34 30 OB = EVEN + (DD - 2 - C + DD)+*D0)+(E + CD)+ELOG (X) FJ3 36 31 ODD = EVEN + (DD - 2 - C + J3 36 31 ODD = EVEN + (DD - 2 - C + J3 36 33 OD = EVEN + (DD - 2 - C + J3 36 34 OD 36 T = 1, INT 35 EVEN = EVEN + ((10 - X + DP)+*D0)+(X + CD)+ELOG (X) FJ3 36 37 OD = EVEN + (DD - 2 - C + FJ3 44 39 IF (R1 48, 48, 48, 40 39 IF (R1 48, 48, 48, 40 40 IF ((R1 - A8, 48, 48, 40 41 FORMAT (23H J3 (F, 0) NOT CONVERCENT) FJ3 40 42 AREA = EARCA 44 AREA = EARCA 44 AREA = EARCA 45 AREA = ENC 45 AREA = ENC 4	\$PUNCH OBJECT		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	FUNCTION FJ3(P,G,EPS, ETAI, ACC)	FJ3	01
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1 DP = P	FJ3	02
3T1 = CP + 1.0FJ3044T2 = T1/(CP + 2.0)FJ3065T3 = T1/(CP + 3.6)FJ3066FO = 1.0FJ3077F = EPSFJ3088F1 = (1.0 - [C.>+C)++DP)++DQFJ31310A = 4.0+F1 - F2 - 3.0+FUFJ31111B = 2.0+F2 - 4.0+F1 + 2.0+F0FJ31112DEN = 1.0-CTA1FJ31312DEN = 1.0-CTA1FJ31315T1 = CC + 1.0FJ31616T2 = T1/(CD + 3.0)FJ31617T3 = T1/(CD + 3.0)FJ31918F0 = 0.0FJ32119F1 = (1.0 - C.S+E)+*DEL)*ELUG (1.0 - 0.5*E)FJ320F2 = (1(.0 - E)*OECL)*LCUG (1.0 - 0.5*E)FJ321A = 4.0+F1 - F2 - 3.0+F0FJ322A = 4.0+F1 - F2 - 3.0+F0FJ323A = 4.0+F1 - F2 - 3.0+F0FJ324A = 4.0+F1 - F2 - 3.0+F0FJ32526F1 = 72 - 3.0+F0FJ324A = 4.0+F1 + 72 - 4.1*F1)/(T1+CP+OP)FJ32526F1 = 72 - 3.0+F0FJ324A = 4.0+F1 + 72 - 4.1*F1+71FJ32526F1 = 1.20-2+F1 + 73+F1+7126F1 = 2.0+F2 - 4.0+F1 + 2.0+F0FJ3277 = 1.0F3324A = 2.0+F2 - 4.0+F1 + 2.0+F0FJ325CD = 0.0FJ326ND = 0.0FJ32718	$2 \text{ DQ} = \text{ Q} - 1 \cdot 0$	FJ3	03
$\begin{array}{llllllllllllllllllllllllllllllllllll$	3 T1 = CP + 1.0	FJ3	04
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$4 T_2 = T_1/(DP + 2.0)$	FJ3	05
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	5 T3 = T1/(DP + 3.6)	F J 3	00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$6 \mathrm{F0} = 1.0$	F J 3	07
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	7 E = EPS	F J 3	00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 FI = (1.0 - (6.5*L)**DP)**DQ	F J 5	10
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	9 F2 = (1.0 - E + D) + D = 0	F J J	11
11 D = 2.0072 =0071 (C + T2*A + T3*B) - (F0 + T2*T2*A + T3*T3*B)/T1)*(F3 15 120EN = (ELGG (E)*(F0 + T2*A + T3*B) - (F0 + T2*T2*A + T3*T3*B)/T1)*(F3 15 13 DEL = 1.0/DP GME = 1.0/CFA F33 (F) F3 (F) T1 = CQ + 1.0 (F) F3 (F) T1 = CQ + 1.0 (F) F3 (F) T1 = T1/(CO + 2.0) (F) T3 (F) T3 (F) T1 = T1/(CO + 2.0) (F) T3	$10 A = 4 \cdot 0 + F1 - F2 - 3 \cdot 0 + F0$	E.I.3	12
$\begin{aligned} 120 \text{ Let } = 120 \text{ C} =$	$11 \text{ B} = 2 \cdot 0 \cdot \pi (2 - 4 \cdot 0 \cdot \pi (1 + 2 \cdot 0 \cdot \pi (0 + 1) + 1) + 1) + 1 + 1 + 1 + 1 + 1 + 1 $	(FJ3	13
13DEL1.0F.31513DEL1.0-C TAIF.316 $E = 1.0 - C$ ME*+CPF.31715TI = DC + 1.0F.31816T2 = T1/(C0 + 2.0)F.31217T3 = T1/(C0 + 3.0)F.32018F0 = 0.0F.32119F1 = ((1.0 - C.5*C)**DEL)*ELUG (1.0 - 0.5*E)F.32220F2 = ((1.0 - E)**DEL)*ELUG (1.0 - E)F.32321A = 4.0*F1 - F2 - 3.0*F0F.32323EN = EN + (F0 + T2*A + T3*B)*(E**T1)/(T1*DP*DP)F.326E = EPSF.327240ENDS = ((1.0 - CME**DP)**DQ)*(E**DP)*ELDG (E)F.3240ENDS = ((1.0 - E**DP)**DQ)*(E**DP)*ELDG (E)F.329250CD = 0.0F.3317.V = 1.0F.328 <even 0.0<="" =="" td="">F.33329AREAL = 0.0F.320X = E + H/2.F.33.33.431<0DD = EVEN * COD</even>	$120 \text{ end} = 1200 \text{ (e)} + 170 \text{ (f)} + 1200 \text$	FJ3	14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		FJ3	15
$\begin{array}{llllllllllllllllllllllllllllllllllll$		FJ3	16
$ \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 7 & 1 & 1 & 1/(C0 + 2 & 0) \\ 1 & 7 & 1 & 1 & 1/(C0 + 3 & 0) \\ 1 & 7 & 1 & 1 & 1/(C0 + 3 & 0) \\ 1 & 7 & 1 & 1 & 1/(C0 + 3 & 0) \\ 1 & 7 & 1 & 1 & 1/(C0 + 3 & 0) \\ 1 & 7 & 1 & 1 & 1/(C0 + 3 & 0) \\ 2 & 7 & 7 & 1 & 1 & 7 & 7 & 1 & 1 \\ 2 & 7 & 7 & 1 & 1 & 0 \\ 2 & 7 & 7 & 1 & 1 & 1 \\ 2 & 7 & 1 & 1 & 0 \\ 2 & 7 & 1 & 1 & 0 \\ 2 & 7 & 1 & 1 & 0 \\ 2 & 7 & 1 & 1 & 0 \\ 2 & 7 & 1 & 1 & 0 \\ 2 & 7 & 1 & 1 & 0 \\ 2 & 7 & 1 & 1 & 0 \\ 2 & 7 & 1 & 1 & 0 \\ 2 & 7 & 1 & 1 & 0 \\ 2 & 7 & 7 & 1 & 0 \\ 3 & 7 & 7 & 1 & 1 & 0 \\ 3 & 7 & 7 & 1 & 1 & 0 \\ 3 & 7 & 7 & 1 & 1 & 0 \\ 3 & 7 & 7 & 1 & 1 & 0 \\ 3 & 7 & 7 & 1 & 1 & 0 \\ 3 & 7 & 7 & 1 & 1 & 0 \\ 3 & 7 & 7 & 1 & 0 \\ 3 & 7 & 7 & 1 & 0 \\ 3 & 7 & 7 & 1 & 0 \\ 3 & 7 & 7 & 1 & 0 \\ 3 & 7 & 7 & 1 & 0 \\ 3 & 7 & 7 & 1 & 0 \\ 3 & 7 & 7 & 1 & 0 \\ 3 & 7 & 7 & 1 & 0 \\ 3 & 7 & 7 & 1 & 0 \\ 3 & 7 & 7 & 1 & 0 \\ 3 & 7 & 7 & 1 & 0 \\ 3 & 7 & 7 & 1 & 0 \\ 3 & 7 & 7 & 1 & 0 \\ 3 & 7 & 7 & 1 & 0 \\ 3 & 7 & 7 & 1 & 0 \\ 3 & 7 & 7 & 7 & 1 & 0 \\ 3 & 7 & 7 & 7 & 1 & 0 \\ 3 & 7 & 7 & 7 & 7 & 0 \\ 3 & 7 & 7 & 7 & 7 & 0 \\ 3 & 7 & 7 & 7 & 7 & 0 \\ 3 & 7 & 7 & 7 & 7 & 0 \\ 3 & 7 & 7 & 7 & 0 \\ 3 & 7 & 7 & 7 & 0 \\ 3 & 7 & 7 & 7 & 0 \\ 3 & 7 & 7 & 7 & 0 \\ 3 & 7 & 7 & 7 & 0 \\ 3 & 7 & 7 & 7 & 0 \\ 3 & 7 & 7 & 7 & 0 \\ 3 & 7 & 7 & 7 & 0 \\ 3 & 7 & 7 & 7 & 0 \\ 3 & 7 & 7 & 7 & 0 \\ 3 & 7 & 7 & 7 & 0 \\ 3 & 7 & 7 & 7 & 0 \\ 3 & 7 & 7 & 0 \\ 3 & 7 & 7 & 7 & 7 \\ 4 & 7 & 7 & 7 & 7 \\ 5 & 7 & 7 & 7 & 7 \\ 5 & 7 & 7 & 7 & 7 \\ 5 & 7 & 7 & 7 & 7 \\ 5 & 7 & 7 & 7 & 7 \\ 5 & 7 & 7 & 7 \\ 5 & 7 & 7 & 7 \\ 5 & 7 & 7 & 7 \\ 5 & 7 &$	F = 1 - 0 = 0 F = a F P	FJ3	17
16T2 = T1/(D0 + 2.0)FJ3 [0]17T3 = T1/(C0 + 3.0)FJ3 2018F0 = 0.0FJ3 2119F1 = ((1.0 - C.5*E)*DEL)*ELUG (1.0 - 0.5*E)FJ3 2321A = 4.0*F1 - F2 - 3.0*F0FJ3 2321A = 4.0*F1 - F2 - 3.0*F0FJ3 2422B = 2.0*F2 - 4.0*F1 + 2.0*F0FJ3 2423EN = EN + (F0 + T2*A + T3*B)*(E**T1)/(T1*DP*DP)FJ3 26E = EPSC11.0 - E**DP)**DQ)*(E**DP)*ELOG (E)FJ3 281 + (1.0 - CME**DP)**DQ)*(E**DP)*ELOG (UME)FJ3 2925ODD = 0.0FJ3 3326INT = 127Y = 1.0FJ3 3329AFEA1 = 0.0FJ3 3330H = (CME - E)/VFJ3 3631DOD = EVEN + CDDFJ3 3733EVCN = 0.CFJ3 3934DOD 36 I = 1, INTFJ3 3935EVEN = EVEN + ((1.0 - X**DP)**DQ)*(X**DP)*ELOG (X)FJ3 4036X = x + HFJ3 4037AREA = (ENDS + 4.0*EVEN + 2.0*0DD)*H/6.0FJ3 4339IF (R) 48, 48, 40FJ3 4440IF (INT - 16384) 44, 42, 42FJ3 4541FORMAT (23H J3(P,C) NOT CONVERGENT)FJ3 4642WRITE OUTPUT TAPE 6, 41FJ3 4743GALL SYSERRFJ3 5344AREA1 = AREAFJ3 5345FJ3 50FJ3 5346V = 2.0*VFJ3 5347G T0 30FJ3 5349RETURNFJ3 5349RETURNFJ3 5340		FJ3	18
17T3 = T1/(C0 + 3.0)FJ3 2018FO = 0.0FJ3 2119FI = ((1.0 - C.5*E)*DEL)*ELUG (1.0 - 0.5*E)FJ3 2220F2 = ((1.0 - E)*DEL)ELUG (1.0 - E)FJ3 2321A = 4.0*F1 - F2 - 3.0*F0FJ3 2422B = 2.0*F2 - 4.0*F1 + 2.0*F0FJ3 2523EN = EN + (F0 + T2*A + T3*B)*(E**T1)/(T1*DP*DP)FJ3 26E = EPSFJ3 27240ENDS = ((1.0 - E**DP)**DQ)*(E**DP)*ELOG (E)FJ3 281 + ((1.0 - CME**DP)**CQ)*(OME**DP)*FLCG (UME)FJ3 2925ODD = 0.0FJ3 3326INT = 1FJ3 3327V = 1.0FJ3 3328EVEN = 0.0FJ3 3329AREA1 = 0.0FJ3 3330D = EVEN + (CDDFJ3 3834D0 = EVEN + ((1.0 - X**DP)*DQ)*(X**DP)*ELOG (X)FJ3 3836AREA = (ENDS + 4.0*EVEN + 2.0*0DD)*H/6.0FJ3 4239IF (R) 48, 48, 40FJ3 4030IF (R) 48, 48, 40, 40FJ3 4440IF (INT - 16384) 44, 42, 42FJ3 4743GAL = ARCAFJ3 4944AREA1 = ARCAFJ3 4944AREA1 = ARCAFJ3 4945INT = 2*INTFJ3 5546V = 2.0*VFJ3 5347GO TO 3CFJ3 5349RETURNFJ3 5349RETURNFJ3 5349RETURNFJ3 5349RETURNFJ3 5349RETURNFJ3 5340RETURNFJ3 53	$16 \ 12 = 11/(10 + 2.0)$	FJ3	12
18FO= 0.0FJ32119F1 = (11.0 - C.5*E)**DEL)*ELOG (1.0 - 0.5*E)FJ32320F2 = ((1.0 - E)**DEL)*ELOG (1.0 - E)FJ32321A = 4.0*F1 - F2 - 3.0*F0FJ32422B = 2.0*F2 - 4.0*F1 + 2.0*F0FJ32523EN = EN + (F0 + T2*A + T3*B)*(E**T1)/(T1*CP*DP)FJ326E = EPSFJ323FJ327240ENDS = ((1.0 - C**D)**DQ)*(E**CP)*ELOG (E)FJ32925CDD = 0.0FJ33026INT = 1FJ3FJ327V = 1.0FJ32328EVEN = 0.0FJ33329AREA1 = 0.0FJ331CDD = EVEN + CDDFJ332EVEN = 0.CFJ333EVEN = 0.CFJ334DOD = EVEN + (11.0 - X**DP)**DQ)*(X**DP)*ELOG (X)FJ335EVEN = EVEN + (11.0 - X**DP)**DQ)*(X**DP)*ELOG (X)FJ336K = X + HFJ337AREA = (ENDS + 4.0*EVEN + 2.0*0DD)*H/6.0FJ339F F(R) 48, 48, 40FJ340IF (R) 48, 48, 40FJ341FORMAT (23H J3(P,O) NOT CONVERGENT)FJ342KEA1 = 2.0*VFJ343GAFJ344AREA1 = AREAFJ344AREA1 = AREAFJ345IF (INT - 16384)44, 42, 4244AREA1 = AREAFJ347GO TO 3CFJ348FJ3S5<	$17 T_3 = T_1/(C_0 + 3.0)$	FJ3	20
19F1 = $(11.0 - C.5*E)*DEL)*ELUG (1.0 - 0.5*E)$ FJ3 2220F2 = $(11.0 - E)*DEL)*ELUG (1.0 - E)$ FJ3 2321A = 4.0*F1 - F2 - 3.0*F0FJ3 2422B = 2.0*F2 - 4.0*F1 + 2.0*F0FJ3 2523EN = EN + (F0 + T2*A + T3*B)*(E**T1)/(T1*DP*DP)FJ3 26E = EPSFJ3 27240ENDS = (11.0 - E**DP)**DQ)*(E**DP)*ELUG (E)FJ3 2925ODD = 0.0FJ3 3026INT = 1FJ3 2927V = 1.0FJ3 3328EVEN = 0.0FJ3 3329AREAL = 0.0FJ3 3329AREAL = 0.0FJ3 3331DDD = EVEN + CDDFJ3 3632X = E + H/2.FJ3 3733EVEN = 0.0FJ3 3634DO 36 I = 1, INTFJ3 3935EVEN = EVEN + ((1.0 - X**DP)**DQ)*(X**DP)*ELOG (X)FJ3 4036X = X + HFJ3 4437AREA = (ENDS + 4.0*EVEN + 2.0*DDD)*H/6.0FJ3 4339IF (R) 48, 48, 40FJ3 4440IF (INT - 16384) 44, 42, 42FJ3 4441FORMAT (23H J3(P,0) NOT CONVERCENT)FJ3 4642WITE OUTPUT TAPE 6, 41FJ3 4844AREA1 = ARCAFJ3 4844AREA1 = ARCAFJ3 4844AREA1 = ARCAFJ3 4844AREA1 = ARCAFJ3 5345FJ3 53FJ3 5346FJ3 53FJ3 5347GO TO 3CFJ3 5348FJ3 53FJ3 5349FUNNFJ	18 FC = 0.0	FJ3	21
20 $F2 = ((1,0) - E) * DE(1) * ELOG (1,0) - E)$ $FJ3 23$ 21 $A = 4,0*F1 - F2 - 3,0*F0$ $FJ3 25$ 23 $EN = EN + (F0 + T2*A + T3*B) * (E**T1)/(T1*DP*DP)$ $FJ3 26$ $E = EPS$ $FJ3 = 27$ 240ENDS = ((1,0) - E**DP)**DQ)*(E**DP)*ELOG (E) $FJ3 27$ 25 $CDD = 0.0$ $FJ3 30$ 26 $INT = 1$ $FJ3 23$ 27 $V = 1.0$ $FJ3 33$ 28 $EVEN = 0.0$ $FJ3 33$ 29 $AEEA1 = 0.0$ $FJ3 33$ 30 $H = (CME - E)/V$ $FJ3 33$ 31 $DDD = EVEN + CDD$ $FJ3 33$ 32 $AEEA1 = 0.0$ $FJ3 33$ 33 $EVEN = UCN + (11.0 - X**DP)*DQ)*(X**DP)*ELOG (X)$ $FJ3 43$ 34 $DO 36 I = 1, INT$ $FJ3 40$ 35 $EVEN = EVCN + (11.0 - X**DP)*DQ)*(X**DP)*ELOG (X)$ $FJ3 43$ 36 $X = X + H$ $FJ3 40$ 37 $AEEA1 = (ADS + 4.0*EVEN + 2.0*0DD)*H/6.0$ $FJ3 43$ 39 $IF (R) 48, 48, 40$ $FJ3 44$ 40 $IF (INT - 16384) 44, 42, 42$ $FJ3 44$ 41 $FORMAT (23H J3I; PC) NOT COVERCENT)$ $FJ3 47$ 42 $KRIIF OUTPUT TAPE 6, 41$ $FJ3 47$ 43 $AEEA1 = ARCA$ $FJ3 47$ 44 $AFEA1 = ARCA$ $FJ3 55$ 48 $FJ3 = AREA + EN$ $FJ3 55$ 48 $FJ3 = AREA + EN$ $FJ3 55$ 49 $FIURN$ $FJ3 55$	19 F1 = $((1.0 - C.5*E)**DEL)*ELUG (1.0 - 0.5*E)$	FJ3	22
$21 \ A = 4, 0*F1 - F2 - 3.0*F0$ FJ3 24 $22 \ B = 2.0*F2 - 4.0*F1 + 2.0*F0$ FJ3 25 $23 \ EN = EN + (F0 + T2*A + T3*B)*(E**T1)/(T1*DP*DP)$ FJ3 26 $E = EPS$ FJ3 27 $240ENDS = ((1.0 - E*DP)**D0)*(E**DP)*EL0G (E)$ FJ3 27 $1 + (11.0 - CME**DP)**D0)*(E**DP)*FLCG (UME)$ FJ3 30 $25 \ CDD = 0.0$ FJ3 30 $26 \ INT = 1$ FJ3 $27 \ V = 1.0$ FJ3 32 $28 \ EVEN = 0.0$ FJ3 33 $29 \ AREA1 = 0.0$ FJ3 33 $29 \ AREA1 = 0.0$ FJ3 36 $32 \ X = E + H/2.$ FJ3 37 $33 \ EVEN = 0.0$ FJ3 38 $30 \ 0 36 \ I = 1, INT$ FJ3 38 $34 \ D0 \ 36 \ I = 1, INT$ FJ3 40 $37 \ AREA = (END + 4.0*EVEN + 2.0*ODD)*(X**DP)*ELOG (X)$ FJ3 40 $36 \ X = X + H$ FJ3 40 $37 \ AREA = (END + 4.0*EVEN + 2.0*ODD)*H/6.0$ FJ3 43 $39 \ IF (R) \ 48, \ 48, \ 40$ FJ3 44 $40 \ IF \ (INT - 16384) \ 44, \ 42, \ 42$ FJ3 45 $41 \ FORMAT \ (23H \ J3(P,C) \ NOT \ CONVERCENT)$ FJ3 48 $42 \ AREA = ARCA$ FJ3 49 $45 \ INT = 2*INT$ FJ3 49 $45 \ INT = 2*INT$ FJ3 55 $48 \ FJ3 = ARCA + EN$ FJ3 55 $48 \ FJ3 = ARCA + EN$ FJ3 55 $49 \ RETURN$ FJ3 55 $49 \ RETURN$ FJ3 55	20 F2 = ((1.0 - E) * DEL) * ELOG (1.0 - E)	FJ3	23
22 $B = 2.0 + F2 - 4.0 + F1 + 2.0 + F0$ FJ3 2523 $EN = EN + (F0 + T2*A + T3*B) * (E**T1)/(T1*DP*DP)$ FJ3 26 $E = EP5$ FJ3 27240ENDS = ((1.0 - E*+DP)**DQ)*(E**DP)*ELGG (E)FJ3 291 + ((1.0 - CME**DP)**DQ)*(OME**DP)*FLCG (UME)FJ3 3025CDD = 0.0FJ3 3026INT = 1FJ3 3227V = 1.0FJ3 3328EVEN = 0.0FJ3 3329AREA1 = 0.0FJ3 3430H = 1(CME - E)/VFJ3 3331DDD = EVEN + CDDFJ3 3332X = E + H/2.FJ3 3733EVEN = 0.0FJ3 3434DD = EVEN + (1.0 - X**DP)**DQ)*(X**DP)*ELOG (X)FJ3 4035EVEN = 0.0FJ3 4236EVEN = EVEN + (1.0 - X**DP)**DQ)*(X**DP)*ELOG (X)FJ3 4036X = X + HFJ3 4037AREA = (ENDS + 4.0 + EVEN + 2.0 + 0DD)*H/6.0FJ3 4238R = ABSF(AREA1/AREA - 1.0) - ACCFJ3 4339IF (INT - 16384) 44, 42, 42FJ3 4440IF (INT - 16384) 44, 42, 42FJ3 4440IF (INT - 16384) 44, 42, 42FJ3 4642WRITE OUTPUT TAPE 6, 41FJ3 4945INT = 2*INTFJ3 5046V = 2.0 *VFJ3 5147GO TO 30FJ3 5349RFIJRFJ3 5349RFURNFJ3 5349RFURNFJ3 5349RFURNFJ3 5340FJ3 = AREA + EN41FJ3 51 </td <td>$21 \text{ A} = 4.0 \pm F1 - F2 - 3.0 \pm F0$</td> <td>FJ3</td> <td>24</td>	$21 \text{ A} = 4.0 \pm F1 - F2 - 3.0 \pm F0$	FJ3	24
23EN = EN + $(F0 + T2*A + T3*B)*(E**T1)/(T1*DP*DP)$ FJ3 26E = EPSFJ3 27240CNDS = $(11.0 - E**DP)**D0)*(E**DP)*ELGG (E)$ FJ3 281 + $((1.0 - CME**DP)**D0)*(OME**DP)*FLCG (UME)$ FJ3 3026INT = 1FJ3 3127 V = 1.0FJ3 3228EVEN = 0.0FJ3 3229AREA1 = 0.0FJ3 3329AREA1 = 0.0FJ3 3330H = (CME - E)/VFJ3 3631DDD = EVEN + CDDFJ3 3632X = E + H/2.FJ3 3634D0 36 I = 1, INTFJ3 3935EVEN = 0.0FJ3 3936X = X + HFJ3 4137AREA = (ENDS + 4.0*EVEN + 2.0*0DD)*H/6.0FJ3 4239IF (R) 48, 48, 40FJ3 4339IF (R) 48, 48, 40FJ3 4440IF (INT - I6384) 44, 42, 42FJ3 4541FORMAT (23H J3(P,C) NOT CONVERGENT)FJ3 4843AREA1 = ARCAFJ3 4944AREA1 = ARCAFJ3 4945INT = 2*INTFJ3 4945INT = 2*INTFJ3 5246V = 2.0*VFJ3 5248FJ3 = AREA + ENFJ3 5349RFIURNFJ3 5441FUNFJ3 5546FJ3 = AREA + ENFJ3 5647GO T0 30FJ3 5548FJ3 = AREA + ENFJ3 5649FJ1 50FJ3 5540RFURNFJ3 5641FJ3 56FJ3 56 <tr <td="">FJ3 56</tr>	22 B = 2.0*F2 - 4.0*F1 + 2.0*F0	FJ3	25
E = EPSFJ3 2/240ENDS = ((1.0 - E**DP)**DQ)*(E**DP)*ELGG (E)FJ3 281 + ((1.0 - CME**DP)**CQ)*(OME**DP)*FLCG (UME)FJ3 3025 GCD = 0.0FJ3 3127 V = 1.0FJ3 3228 EVEN = 0.0FJ3 3329 AREA1 = 0.0FJ3 3430 H = (CME - E)/VFJ3 3531 ODD = EVEN + CDCFJ3 3732 E + H/2.FJ3 3733 EVEN = 0.0FJ3 3735 EVEN = EVEN + ((1.0 - X**DP)**DQ)*(X**DP)*ELOG (X)FJ3 3436 X = X + HFJ3 3437 AREA = (ENDS + 4.0*EVEN + 2.0*ODD)*H/6.0FJ3 4238 R = ABSF(AREA1/AREA - 1.0) - ACCFJ3 4439 IF (R) 48, 48, 40FJ3 4541 FORMAT (23H J3(P,C) NOT CONVERCENT)FJ3 4541 FORMAT (23H J3(P,C) NOT CONVERCENT)FJ3 4945 INT = 2*INTFJ3 4945 INT = 2*INTFJ3 5346 V = 2.0*VFJ3 5347 GO TU 3CFJ3 5348 FJ3 = AREA + ENFJ3 5349 RFTURNFJ3 54ENDFJ3 5441 FURNFJ3 53	23 EN = EN + (FO + T2*A + T3*B)*(E**T1)/(T1*CP*DP)	FJ3	26
240ENDS = ((1.0 - E*+DP)**DQ)*(E*+DP)*ELUG (E) 1 + ((1.0 - GME**DP)**DQ)*(GME**DP)*FLCG (UME) FJ3 30 26 INT = 1 77 V = 1.0 28 EVEN = 0.0 28 EVEN = 0.0 32 A REA1 = 0.0 53 33 30 H = (GME - E)/V 53 34 30 H = (GME - E)/V 53 35 31 ODD = EVEN + CDD 53 27 X = E + H/2. 53 37 33 EVEN = 0.0 53 38 54 DD 36 I = 1, INT 55 EVEN = EVEN + ((1.0 - X**DP)**DQ)*(X**DP)*ELOG (X) 57 39 55 EVEN = EVEN + ((1.0 - X**DP)**DQ)*(X**DP)*ELOG (X) 57 39 56 X = X + H 57 38 57 4 REA1 = (ENDS + 4.0*EVEN + 2.0*ODD)*H/6.0 57 44 59 IF (R) 48, 48, 40 50 IF (INT - 16384) 44, 42, 42 51 40 51 41 52 41 FORMAT (23H J3(P,0) NOT CONVERCENT) 51 44 51 41 52 64 V = 2.0*V 51 54 54 6 V = 2.0*V 55 66 V = 2.0*V 55 67 GO TO 30 57 68 FJ3 = AREA + EN 50 FUNE 51 55 51 60 FUNE 51 55 52 68 FJ3 = AREA + EN 51 55 52 68 FJ3 = AREA + EN 51 55 53 69 RETURN 53 54 54 70 FUNE 54 70 FUNE 54 70 70 70 30 54 70 70 70 30 55 70 70 70 70 70 55 70 70 70 30 55 70 70 70 30 55 70 70 70 30 55 70 70 70 30 55 70 70 70 70 55 70 70 70 55 70 70 70 70 55 70 70 70 70 55 70 70 70 70 55 70 70 70 55 70 70 70 55 70 70 70 55 7	E = EPS	F J 3	27
1 + ((1.0 - CME**DP)**DQ)*(UME**DP)*FLCG (UME) FJ3 20 FJ3 30 25 GDD = 0.0 FJ3 30 26 INT = 1 FJ3 31 27 V = 1.0 FJ3 32 28 EVEN = 0.0 FJ3 32 29 AREA1 = 0.0 FJ3 33 29 AREA1 = 0.0 FJ3 33 30 H = (CME - E)/V FJ3 35 31 ODD = EVEN + CDD FJ3 36 32 X = E + H/2. FJ3 37 33 EVEN = 0.C FJ3 38 34 OD 36 I = 1, INT FJ3 37 35 EVEN = EVEN + ((1.0 - X**DP)**DQ)*(X**DP)*ELOG (X) FJ3 40 36 X = X + H FJ3 42 37 AREA = (ENDS + 4.0*EVEN + 2.0*(ODD)*H/6.0 FJ3 42 38 R = ABSF(AREA1/AREA - 1.0) - ACC FJ3 43 39 IF (R) 48, 48, 40 FJ3 44 40 IF (INT - 16384) 44, 42, 42 FJ3 44 40 IF (INT - 16384) 44, 42, 42 FJ3 44 40 IF (INT - 16384) 44, 42, 42 FJ3 44 41 FORMAT (23H J3(P,Q) NOT CONVERGENT) FJ3 48 44 AREA1 = ARCA FJ3 47 43 CALL SYSERR FJ3 48 44 AREA1 = ARCA FJ3 47 45 INT = 2*INT FJ3 47 47 GO TO 3C FJ3 52 48 FJ3 = AREA + EN FJ3 55 49 RETURN FJ3 55	240ENDS = ((1 - C - E + DP) + DQ) + (E + DP) + ELUG (E)	F J 3	28
25 ODD = 0.0 FJ3 30 26 INT = 1 FJ3 31 27 V = 1.0 FJ3 32 28 EVEN = 0.0 FJ3 33 29 AREA1 = 0.0 FJ3 34 30 H = (OME - E)/V FJ3 35 31 DDD = EVEN + CDD FJ3 36 32 X = E + H/2. FJ3 37 35 EVEN = 0.0 FJ3 38 34 DO 36 I = 1, INT FJ3 39 35 EVEN = EVEN + (11.0 - X**DP)**DQ)*(X**DP)*ELOG (X) FJ3 40 36 X = X + H FJ3 41 37 AREA = (ENDS + 4.0*EVEN + 2.0*0DD)*H/6.0 FJ3 43 39 IF (R) 48, 48, 40 FJ3 44 40 IF (INT - 16384) 44, 42, 42 FJ3 44 40 IF (INT - 16384) 44, 42, 42 FJ3 45 41 FORMAT (23H J3(P, C) NOT CONVERCENT) FJ3 48 44 AREA1 = AREA FJ3 49 45 INT = 2*INT FJ3 50 46 V = 2.0*V FJ3 51 47 GO TO 3C FJ3 52 48 FJ3 = AREA + EN FJ3 52 48 FJ3 = AREA + EN FJ3 53 49 RETURN FJ3 52	1 + ((1.0 - CME**DP)**CQ)*(UME**CP)*FLCG (UME)	F J 3	29
26 INT = 1 1332 $27 V = 1.0$ $FJ3 32$ $28 EVEN = 0.0$ $FJ3 33$ $29 AREA1 = 0.0$ $FJ3 34$ $30 H = (CME - E)/V$ $FJ3 35$ $31 ODD = EVEN + CDD$ $FJ3 36$ $32 X = E + H/2.$ $FJ3 37$ $33 EVEN = 0.0$ $FJ3 38$ $34 DD 36 I = 1, INT$ $FJ3 39$ $35 EVEN = EVCN + ((1.0 - X**DP)**DQ)*(X**DP)*ELOG(X)$ $FJ3 40$ $36 X = X + H$ $FJ3 41$ $37 AREA = (ENDS + 4.0*EVEN + 2.0*(0DD)*H/6.0)$ $FJ3 42$ $38 R = ABSF(AREA1/AREA - 1.0) - ACC$ $FJ3 43$ $39 IF(R) 48, 48, 40$ $FJ3 44$ $40 IF(INT - 16384) 44, 42, 42$ $FJ3 45$ $41 FORMAT(23H) 3(P,0) NOT CONVERCENT)$ $FJ3 46$ $42 WRITE OUTPUT TAPE 6, 41$ $FJ3 49$ $43 CALL SYSERR$ $FJ3 49$ $45 INT = 2*INT$ $FJ3 51$ $47 GO TO 30$ $FJ3 52$ $48 FJ3 = AREA + EN$ $FJ3 53$ $49 RFTURN$ $FJ3 54$ $47 GD TO 30$ $FJ3 54$ $48 FJ3 = AREA + EN$ $FJ3 54$ $47 GD TO 30$ $FJ3 54$ $47 GD TO 30$ $FJ3 54$ $48 FJ3 = AREA + EN$ $FJ3 54$ $49 RFTURN$ $FJ3 54$ $40 CD TO 30$ $FJ3 54$ $41 FDOR$ $FJ3 54$ $42 RETURN$ $FJ3 54$ $43 RED$ $FJ3 54$ $44 RED$ $FJ3 54$ $47 GD TO 30$ </td <td>25 GDD = 0.0</td> <td>- F J 2</td> <td>20</td>	25 GDD = 0.0	- F J 2	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26 INI = 1	E 13	32
26EVEN = 0.0FJ3 3429AREA1 = 0.0FJ3 3430H = $(OME - E)/V$ FJ3 3531ODD = EVEN + CDDFJ3 3632X = E + H/2.FJ3 3733EVEN = 0.0FJ3 3834DO 36 I = 1, INTFJ3 3935EVEN = EVEN + ((1.0 - X**DP)**DQ)*(X**DP)*ELOG (X)FJ3 4036X = X + HFJ3 4137AREA = (ENDS + 4.0*EVEN + 2.0*(DD)*H/6.0FJ3 4238R = ABSF(AREA1/AREA - 1.0) - ACCFJ3 4339IF (R) 48, 48, 40FJ3 4440IF (INT - 16384) 44, 42, 42FJ3 4541FORMAT (23H J3(P,C) NOT CONVERCENT)FJ3 4642WRITE OUTPUT TAPE 6, 41FJ3 4743CALL SYSERRFJ3 4944AREA1 = ARCAFJ3 4945INT = 2*INTFJ3 5147GO TO 30FJ3 5248FJ3 = AREA + ENFJ3 5349RETURNFJ3 5540FLURNFJ3 55	27 V = 1.0	E 13	33
29 $AREAT = 0.00$ FJ330 $H = (CME - E)/V$ FJ331 $DDD = EVEN + CDD$ FJ332 $X = E + H/2.$ FJ333 $EVEN = 0.0$ FJ334 DD 36 $I = 1, INT$ 35 $EVEN = 0.0$ FJ336 $X = X + H$ FJ337 $AREA = (ENDS + 4.0*EVEN + 2.0*(0DD)*H/6.0)$ FJ338 $R = ABSF(AREAI/AREA - 1.0) - ACC$ FJ339IF (R)48, 48, 4040IF (INT - 16386)44, 42, 4241FORMAT (23H J3(P, 0) NOT CONVERGENT)FJ342wRITE OUTPUT TAPE 6, 41FJ344AREA1 = ARCAFJ345INT = 2*INTFJ346 $V = 2.0*V$ FJ347GD TO 30FJ348FJ3 = ARCA + ENFJ349RETURNFJ3ENDFJ347FD348FJ3 = ARCA44FJ3 = ARCA + EN45FJ346FJ347FD348FJ3 = ARCA49FURNFJ3FJ349FURNFURNFJ3505149RETURNFURNFJ3FNDFNDFNDFNDFNDFNDFNDFNDFNDFNDFNDFNDFNDFNDFNDFND<	$2\sigma \text{ EVEN } = 0.0$	F.13	34
31 ODD = EVEN + CDD FJ3 36 32 X = E + H/2. FJ3 37 33 EVEN = 0.C FJ3 38 34 D0 36 I = 1, INT FJ3 39 35 EVEN = EVEN + ([1.0 - X**DP)**DQ)*(X**DP)*ELOG (X) FJ3 40 36 X = X + H FJ3 41 37 AREA = (ENDS + 4.0*EVEN + 2.0*(DD)*H/6.0 FJ3 42 39 IF (R) 48, 48, 40 FJ3 44 40 IF (INT - 16384) 44, 42, 42 FJ3 45 41 FORMAT (23H J3(P,C) NOT CONVERCENT) FJ3 48 44 AREA1 = ARCA FJ3 49 45 INT = 2*INT FJ3 49 45 INT = 2*INT FJ3 50 46 V = 2.0*V FJ3 51 47 GO TO 3C FJ3 53 48 FJ3 = ARCA + EN FJ3 53 49 RETURN FJ3 53 49 RETURN FJ3 55	29 AREAL = 0.0	F.J.3	35
31 050 1 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 3 3 3 3 1 1 1 3 3 3 3 3 1 1 1 3 3 3 3 1 1 1 3 4		EJ3	36
33 EVEN = 0.C FJ3 38 34 D0 36 I = 1, INT FJ3 39 35 EVEN = EVEN + ((1.0 - X**DP)**DQ)*(X**DP)*ELOG (X) FJ3 40 36 X = X + H FJ3 40 37 AREA = (ENDS + 4.0*EVEN + 2.0*0DD)*H/6.0 FJ3 41 37 AREA = (ENDS + 4.0*EVEN + 2.0*0DD)*H/6.0 FJ3 43 38 R = ABSF(AREA1/AREA - 1.0) - ACC FJ3 43 39 IF (INT - 16384) 44, 42, 42 FJ3 45 41 FORMAT (23H J3(P,C) NOT CONVERGENT) FJ3 46 42 WRITE OUTPUT TAPE 6, 41 FJ3 47 43 44 AREA1 = ARCA FJ3 49 44 AREA1 = ARCA FJ3 49 45 INT = 2*INT FJ3 50 46 V = 2.0*V FJ3 51 47 GO TO 36 47 GO TO 30 FJ3 52 48 FJ3 52 48 FJ3 AREA + EN FJ3	32 V = 6 V/7	FJ3	37
34 DD 36 I = 1, INT FJ3 39 35 EVEN = EVEN + ((1.0 - X**DP)**DQ)*(X**DP)*ELOG (X) FJ3 40 36 X = X + H FJ3 41 37 AREA = (ENDS + 4.0*EVEN + 2.0*(0D)*H/6.0 FJ3 42 38 R = ABSF(AREA1/AREA - 1.0) - ACC FJ3 43 39 IF (IN 48, 48, 40 FJ3 44 40 IF (INT - 16384) 44, 42, 42 FJ3 45 41 FORMAT (23H J3(P,0) NOT CONVERGENT) FJ3 46 42 WRITE OUTPUT TAPE 6, 41 FJ3 47 43 CALL SYSERR FJ3 49 44 AREA1 = ARCA FJ3 49 45 INT = 2*INT FJ3 50 46 V = 2.0*V FJ3 51 47 GO TO 3C FJ3 52 48 FJ3 = AREA + EN FJ3 53 49 RETURN FJ3 55 49 RETURN FJ3 55	33 EVEN = 0.0	FJ3	38
35 EVEN = EVEN + ((1.0 - X**DP)**DQ)*(X**DP)*ELOG (X) FJ3 40 36 X = X + H FJ3 41 37 AREA = (ENDS + 4.0*EVEN + 2.0*0DD)*H/6.0 FJ3 42 38 R = ABSF(AREA1/AREA - 1.0) - ACC FJ3 43 39 IF (R) 48, 48, 40 FJ3 44 40 IF (INT - 16384) 44, 42, 42 FJ3 45 41 FORMAT (23H J3(P,C) NOT CONVERGENT) FJ3 46 42 WRITE OUTPUT TAPE 6, 41 FJ3 47 43 CALL SYSCRR FJ3 49 44 AREA1 = ARCA FJ3 49 45 INT = 2*INT FJ3 50 46 V = 2.0*V FJ3 51 47 GD TO 3C FJ3 52 48 FJ3 = ARCA + EN FJ3 53 49 RETURN FJ3 54 END FJ3 55	34 DO 36 I = 1. INT	FJ3	39
36 X = X + H FJ3 41 37 AREA = (ENDS + 4.0*EVEN + 2.0*(IDD)*H/6.0 FJ3 42 38 R = ABSF(AREA1/AREA - 1.0) - ACC FJ3 43 39 IF (R) 48, 48, 40 FJ3 44 40 IF (R) 48, 48, 40 FJ3 45 41 FORMAT (23H J3(P,C) NOT CONVERGENT) FJ3 46 42 wRITE OUTPUT TAPE 6, 41 FJ3 47 43 CALL SYSCRR FJ3 48 44 AREA1 = ARCA FJ3 49 45 INT = 2*INT FJ3 50 46 V = 2.0*V FJ3 51 47 GD TO 3C FJ3 52 48 FJ3 = AREA + EN FJ3 53 49 RETURN FJ3 55 END FJ3 55	35 EVEN = EVEN + ((1.0 - X**DP)**DQ)*(X**DP)*ELOG (X)	FJ3	40
37 AREA = (ENDS + 4.0*EVEN + 2.0*00D)*H/6.0 FJ3 42 38 R = ABSF(AREA1/AREA - 1.0) - ACC FJ3 43 39 IF (R) 48, 48, 40 FJ3 44 40 IF (INT - 16384) 44, 42, 42 FJ3 45 41 FORMAT (23H J3(P,C) NOT CONVERCENT) FJ3 46 42 wRITE OUTPUT TAPE 6, 41 FJ3 47 43 CALL SYSER FJ3 49 44 AREA1 = ARCA FJ3 49 45 INT = 2*INT FJ3 50 46 V = 2.0*V FJ3 51 47 GO TO 3C FJ3 53 48 FJ3 = ARCA + EN FJ3 53 49 RETURN FJ3 54 END FJ3 55	36 X = X + H	FJ3	41
38 R = ABSF(AREA1/AREA - 1.0) - ACC FJ3 43 39 IF (R) 48, 48, 40 FJ3 44 40 IF (INT - 16384) 44, 42, 42 FJ3 45 41 FORMAT (23H J3(P,C) NOT CONVERGENT) FJ3 46 42 WRITE OUTPUT TAPE 6, 41 FJ3 47 43 CALL SYSER FJ3 48 44 AREA1 = ARCA FJ3 49 45 INT = 2*INT FJ3 50 46 V = 2.0*V FJ3 51 47 GO TO 30 FJ3 53 48 FJ3 = ARCA + EN FJ3 53 49 RETURN FJ3 53 49 RETURN FJ3 54	37 AREA = (ENDS + 4.0*EVEN + 2.0*(DD)*H/6.0	FJ3	42
39 IF (R) 48, 48, 40 FJ3 44 40 IF (INT - 16384) 44, 42, 42 FJ3 45 41 FORMAT (23H J3(P,C) NOT CONVERCENT) FJ3 46 42 WRITE OUTPUT TAPE 6, 41 FJ3 47 43 CALL SYSER FJ3 48 44 AREA1 = ARCA FJ3 49 45 INT = 2*INT FJ3 50 46 V = 2.0*V FJ3 51 47 GO TO 30 FJ3 52 48 FJ3 = ARCA + EN FJ3 53 49 RETURN FJ3 54 FND FJ3 55	38 R = ABSF(AREA1/AREA - 1.0) - ACC	FJ3	43
40 IF (INT - 16384) 44, 42, 42 FJ3 45 41 FORMAT (23H J3(P,C) NOT CONVERCENT) FJ3 46 42 WRITE OUTPUT TAPE 6, 41 FJ3 47 43 CALL SYSERR FJ3 48 44 AREA1 = ARCA FJ3 49 45 INT = 2*INT FJ3 50 46 V = 2.0*V FJ3 51 47 GO TO 3C FJ3 52 48 FJ3 = ARCA + EN FJ3 53 49 RETURN FJ3 54 END FJ3 55	39 IF (R) 48, 48, 40	FJ3	44
41 FORMAT (23H J3(P,C) NOT CONVERCENT) FJ3 46 42 WRITE OUTPUT TAPE 6, 41 FJ3 47 43 CALL SYSERR FJ3 48 44 AREA1 = ARCA FJ3 49 45 INT = 2*INT FJ3 50 46 V = 2.0*V FJ3 51 47 GO TO 3C FJ3 52 48 FJ3 = ARCA + EN FJ3 53 49 RETURN FJ3 54 END FJ3 55	40 IF (INT - 16384) 44, 42, 42	FJ3	45
42 write output tape 6, 41 FJ3 4/ 43 CALL SYSER FJ3 48 44 AREA1 = ARCA FJ3 49 45 INT = 2*INT FJ3 50 46 V = 2.0*V FJ3 51 47 GD TO 3C FJ3 52 48 FJ3 = AREA + EN FJ3 53 49 RETURN FJ3 54 END FJ3 55	41 FORMAT (23H J3(P,Q) NOT CONVERGENT)	FJ3	46
43 CALL SYSER FJ3 48 44 AREA1 = AREA FJ3 49 45 INT = 2*INT FJ3 50 46 V = 2.0*V FJ3 51 47 GO TO 3C FJ3 52 48 FJ3 = AREA + EN FJ3 53 49 RETURN FJ3 54 ENC FJ3 55	42 WRITE OUTPUT TAPE 6, 41	FJ3	47
44 AREA1 = ARLA FJ3 49 45 INT = 2*INT FJ3 50 46 V = $2.0 \times V$ FJ3 51 47 GO TO 3C FJ3 52 48 FJ3 = AREA + EN FJ3 53 49 RETURN FJ3 54 ENC FJ3 55	43 CALL SYSERR	F J 3	48
45 INI = 2*INI FJ3 50 46 V = $2.0*V$ FJ3 51 47 GO TO 3C FJ3 52 48 FJ3 = AREA + EN FJ3 53 49 RETURN FJ3 54 ENC FJ3 55	44 AREAL = AREA	- F J 5 ⊂ I 3	49
46 V = 2.0*V FJ3 51 47 GO TO 3C FJ3 52 48 FJ3 = AREA + EN FJ3 53 49 RETURN FJ3 54 ENC FJ3 55	45 INI = 2+INI	- C J 3	50
47 GU TU 30 FJ3 52 48 FJ3 = AREA + EN FJ3 53 49 RETURN FJ3 54 ENC FJ3 55	45 V = 2.05V	E 13	52
49 RETURN FJ3 54 ENC FJ3 55		F 3 3	53
END FJ3 55	NO FJJ - ANLA T EN Ao detion	F.13	54
	FND	FJ3	55

L

\$ FORTRAN IBM \$PUNCH OBJECT	
FUNCTION FJ4(P,Q,S,FK2, ETAI, ACC)	FJ4 01
1 DG = S + Q - 1.0	FJ4 02
	FJ4 03
5 12 = 11/106 + 2.00	FJ4 04
+ 13 - (1/100 + 3.0)	FJ4 05
$F = 1_{0} - 0$ MF $+ P$	FJ4 00
6 DP = P	E14 08
8 DEL = $-2.0*(1.0 - 1.0/DP)$	FJ4 09
DQ = 2.6*(1.0 - Q)	FJ4 10
IF $(Q - 1.0)$ 11, 10, 36	FJ4 11
10 FO = SQRT (1.0/FK2 + 1.0)	FJ4 12
GO TO 12	FJ4 13
$11 \ FO = 1.C$	FJ4 14
12 DF = FK2	FJ4 15
13 F1 = SQRT (((1.0 - 0.5*E)**DEL)*((0.5*E)**DQ)/FK2 + 1.0)	FJ4 16
14 F2 = SQRT (((1.6 - E)**DEL)*(E**DQ)/FK2 + 1.0)	FJ4 17
15 A = 4.04F1 - F2 - 3.04F0	FJ4 18
$16 B = 2 \cdot 0 \cdot 12 + 4 \cdot 0 \cdot 11 + 2 \cdot 0 \cdot 10$	FJ4 19
10 UCD - 0 0 11 CN - (LO + 15+9 + 13+9)+(E++(I)+20K1 (UF)/(1[+UF)	FJ4 20
10 Int = 1	FJ4 21
	FJ4 22
21 EVEN = 0.0	FJ7 23 E14 34
AREA1 = 0.0	F 14 25
$EE = 1 \cdot C$	F.14 26
IF (P - 1.0) 36, 22, 23	FJ4 27
22 EE = SQRT $(1.0 + FK2)$	FJ4 28
230ENDS = EE + {(1.0 - OME**DP)**DG)*SQRT {(1.0 - OME**DP)**DQ	+ DF+FJ4 29
$1(OME + (2 \cdot C + DP - 2 \cdot O)))$	FJ4 30
24 DDP = 2.0 + (CP - 1.0)	FJ4 31
25 H = 0 ME/V	FJ4 32
26 UDD = EVEN + UDD	FJ4 33
$21 X = H/2 \cdot 0$	FJ4 34
$20 \text{ EVEN} \neq 0.00$ $29 \text{ DO} 3.1 \text{ I} = 1. \text{ Int}$	FJ4 35
306VEN = EVEN + (1.0 + X**DP)**D()*S(PT (1.0 + X**DP)**D()))))))))))))))))))))))))))))))	FJ4 30
	EI4 38
31 x = x + H	F.14 39
32 AREA = (ENDS + 4.0 EVEN + 2.0 EVDD) H/6.0	EJ4 40
33 R = ABSF(AREA1/AREA - 1.0) - ACC	FJ4 41
34 IF (R) 43, 43, 35	FJ4 42
35 IF (INT - 16384) 39, 36, 36	FJ4 43
36 WRITE OUTPUT TAPE 6, 37	FJ4 44
37 FORMAT (25H J4(P,Q,S) NOT CONVERGENT)	FJ4 45
38 CALL SYSERR	FJ4 46
39 AREAI = AREA	FJ4 47
40 INT = 2 # INT 61 V = 2 0 mV	FJ4 48
1 V → ∠ • U T V 42 CΩ TΩ 25	FJ4 49
43 F 14 = ADFA + FN	FJ4 50
44 RETURN	FJ4 51 F14 F3
END	FJ4 53

•

.

\$ FORTRAN IBM \$PUNCH OBJECT	
FUNCTION EJ5(P.Q.S.FK2. STAL. ACC)	E (5 0)
OME = 1.0 - ETAI	EJ5 02
$2 G = S - Q - 1 \cdot Q$	FJ5 03
$3 \text{ CQ} = 2 \cdot \text{C}^{*}(1 \cdot \text{O} - \text{Q})$	FJ5 04
4 DEL = 1.0 - 1.0/P	FJ5 05
TDEL = 2.0+DEL	FJ5 06
FK = FK2	FJ5 07
IF $(Q - 1.0)$ 6, 5, 35	FJ5 08
5 FK = 1.0 + FK	FJ5 09
6 fo = 1.0/SQRT (FK)	FJ5 10
EPS = 1.0 - OME **P	FJ5 11
7 TPS = 0.5*EPS	FJ5 12
8 F1 = ((1.0 - TPS)**DEL)/SQRT (TPS**QQ + FK2*((1.0 - TPS)**TDEL))	FJ5 13
9 F2 = ((1.0 - EPS)**DEL)/SQRT (EPS**QQ + FK2*((1.C - EPS)**DEL))	FJ5 14
10 A = 4.0 + F1 - F2 - 3.0 + F0	FJ5 15
11 B = $2 \cdot 0 * F2 - 4 \cdot 0 * F1 + 2 \cdot 0 * F0$	FJ5 16
12 T1 = G + 1.0	FJ5 17
$13 T_2 = T_1/(G + 2.0)$	FJ5 18
14 T3 = T1/(G + 3.0)	FJ5 19
15 EN = (FO + 12 + A + 13 + B) + (EPS + + T1) / (T1 + P)	FJ5 20
	FJ5 21
17 INI = 1	FJ5 22
18 V = 1.0	FJ5 25
ABSAN = 0.0	FJ5 24
	FJ5 25
$c = -c_{\bullet} o$	FJ9 20
$\frac{1}{20} = \frac{1}{100} \frac{1}{20} \frac{1}{20$	FJD 21
20 EC = 1.073001 (1.0 = $(NEARD)AR(0 + EV2A(NEAR)2)$ (AD = 2.011) 21 ENDS = $(ADT / (1 A) = (NEARD)AR(0 + EV2A(NEAR)2)$ (AD = 2.011)	FJJ 20
22 PD = 2.0417 + 1.0120 + 1.0210	F 15 30
23 FNDS = (DMF#+PP)+(1,0 - DM5++P)++G)/FNDS + 5F	EJ5 31
24 H = 0 ME/V	EJ5 32
25 0DD = EVEN + CDD	FJ5 33
$26 \times = H/2.0$	FJ5 34
$27 \text{ EVEN} = C \cdot 0$	FJ5 35
28 DO 30 I = 1, INT	FJ5 36
290EVEN = EVEN + (X**PP)*((1.0 - X**P)**G)/SURT ((1.0 - X**P)**Q0 +	FJ5 37
L FK2+(X*+PP))	FJ5 38
30 X = X + H	FJ5 39
31 AREA = (ENDS + $4.0 \times EVEN$ + $2.0 \times ODD$) $\times H/6.0$	FJ5 40
32 R = ABSF(AREA1/AREA - 1.0) - ACC	FJ5 41
33 IF (R) 42, 42, 34	FJ5 42
34 IF (INT - 16384) 38, 35, 35	FJ5 43
35 WRITE OUTPUT TAPE 6, 36	FJ5 44
36 FORMAT (25H J5(P,Q,S) NOT CONVERGENT)	FJ5 45
37 CALL SYSERR	FJ5 46
38 AREAL = AREA	FJ5 47
39 INT = 2*INT	FJ5 48
40 V = 2.0+V	FJ5 49
	FJ5 50
42 FJD = AREA + LN 43 Oction	FJ5 51
	11JD D2
LINU	r J 🤉 🤉 ୪

\$ FORTRAN IBM		
SPUNCH OBJECT	C 16	<u>^1</u>
FUNCTION FJ6(P,Q,R,S,FK2, ETAI, ACC)	E.16	02
1 TQ = 2.0 + (1.0 - 0)	FJG	03
2 P = 2.0*(P - 1.0)	FJ6	04
5 + 16 = 2 + 0 + 16 = 1 + 0	F J 6	05
5 TD = 2.0*(1.0 - 1.0/P)	FJ6	06
EPS = 1.0 - (1 ETAI) **P	FJ6	07
6 TPS = 0.5*EPS	FJ6	08
7 TT = 2.0 * R/P - 1.0 - 1.0/P	F 16	09
8 T1 = G + 1.0	F J 6	11
$9 T_2 = T_1/(G + 2.0)$	F.J.6	12
$T_3 = T_1/(G + 3.0)$	FJ6	13
FK = FKZ	FJ6	14
10 FK = 1.0 + FK	FJ6	15
11 EQ = 1.0/SQRT (FK)	FJ6	16
12 OMW = 1.0 - TPS	FJ6	17
13 F1 = $(OMW**TT)/SQRT (TPS**TQ + FK2*(OMW**TD))$	FJ6	18
14 DMW = 1.0 - EPS	FJ6	19
$15 F2 = \{OMW + TT\}/SQRT (EPS + TQ + FKZ + (UMW + TD)\}$	E IA	20
OME = 1.0 - ETAI	F.16	22
17 A = 4.04 + 1 - 12 - 3.04 + 0	FJ6	23
$18 B = 2.0 \pi r_2 - 4.0 \pi r_1 + 2.0 \pi r_0$ 100 cm = (c100 (EPS) 4 (F0 + T2*A + T3*P) - (F0 + T2*T2*A + T3*T3*P)/T1)	FJ6	24
1+(EPS++T1)/(T1+P)	FJ6	25
20 GDD = 0.0	FJ6	26
21 INT = 1	FJ6	27
22 V = 1.0	FJ6	28
$23 \text{ EVEN} = C_0 O$	F J 6	29
24 AREA1 = 0.0	FJ6	31
25 CMW = 1.0 - CMW + 20 CMW + 2	FJ6	32
	FJ6	33
	FJ6	34
28 GDD = EVEN + GDD	FJ6	35
29 x = H/2.0	FJ6	36
30 EVEN = 0.0	FJ6	37
31 DO 34 I = 1, INT	F J 6	30
32 OMW = 1.0 - X + P	FIA	40
330EVEN = EVEN +{{X**TR}+(UMW**G)/SURT {UMW**TQ + FK2*(X**TF)//2200	F.16	41
	FJ6	42
34 A + A + 7 35 Aper = (ENDS + 4.0+EVEN + 2.0+000)+H/6.0	FJ6	43
36 RR = ABSE(AREAI/AREA - 1.0) - ACC	FJ6	44
37 IF (RR) 46, 46, 38	FJ6	45
38 IF (INT - 16384) 42, 39, 39	FJ6	46
39 WRITE OUTPUT TAPE 6, 40	F J 6	41
40 FORMAT (27H J6(P,Q,R,S) NOT CONVERGENT)	FIG	40
41 CALL SYSER	F.16	50
42 AREAL = AREA	FJ6	51
4) INI = 2*INI 44 V = 2 0*V	FJ6	52
45 GO TO 27	FJ6	53
46 FJ6 = AREA + EN	FJ6	54
47 RETURN	FJ6	55
END	FJ6	56

\$ ¢DUNCI	FORTRAN IBM		
ar UNCI	FUNCTION FJ7(P,Q,S,T,FK2,EPS, ETAI, ACC)	FJ7	01
1	TQ = 2.0 + (1.0 - Q)	FJ7	02
3	G = S - Q - 2.0	FJ7	04
4	T1 = T + 1.0	FJ7	05
2	$12 \neq 11/(1 + 2.0)$ T3 = T1/(T + 3.0)	FJ7	07
	IF (P - 1.0) 53, 6, 7	FJ7	80
6	F0 = 1.0/SQRT (1.0 + FK2)	FJ7	09
7	F0 = 1.0	FJ7	11
8	TPS = 0.5 * EPS	FJ7	12
10	F1 = {OMW++G}/SQRT {OMW++TQ + FK2+(TPS++TP})	FJ7	14
11	OMW = 1.0 - EPS**P	FJ7	15
12	F2 = {UMW#*G}/SQRT {UMW#*TQ + FK2*{EPS**TP}} A = 4.0*F1 - F2 - 3.0*F0	FJ7	10
14	$B = 2 \cdot 0 * F2 - 4 \cdot 0 * F1 + 2 \cdot 0 * F0$	FJ7	18
15	TT = FO + T2+A + T3+B TH = FO + T2+T2+A + T3+T3+B	FJ7 FJ7	19
17	EN = (ELOG (EPS)+TT - TU/T1)+(EPS++T1)/T1	FJ7	21
10	OME = 1.0 - ETAI	FJ7	22
20	T5 = T/P - 1.0 + 1.0/P	FJ7	24
21	T1 = G + 2.0	FJ7	25
22	12 = 11/(6 + 3.0) T3 = T1/(6 + 4.0)	FJ7	20
	FK = FK2	FJ7	28
23	IF $(Q - 1.0)$ 24, 23, 53 EK = 1.0 + EK	FJ7	29
24	FO = -1.0/SQRT (FK)	FJ7	31
	$E = 1 \cdot 0 - CME * * P$ $TPS = 0.5 = 5$	FJ7	32
	OMW = 1 TPS	FJ7	34
27	F1 = (OMW**T5)/SQRT (TPS**TQ + FK2*(OMW**T4)) • ELOG(OMW) /TPS	FJ7	35
20	F2 = (OMW**T5)/SQRT (E **TQ + FK2*(OMW**T4)) • ELOG(OMW) /E	FJ7	37
30	A = 4.0 * F1 - F2 - 3.0 * F0	FJ7	38
31	B = 2.0*F2 - 4.0*F1 + 2.0*F0 EN = EN + (FO + T2*A + T3*B)*(E **T1)/(T1*P*P)	FJ7	4 0
33	$ODD \neq 0.0$	FJ7	41
34	INf = 1 $V = 1.0$	FJ7	42
36	EVEN = 0.0	FJ7	44
37	AREA1 = 0.0	FJ7	45
38	ENDS = {EPS+*T}+{OMW+*G}*ELOG {EPS}/SQRT {OMW+*TQ + FK2*{EPS**TP})FJ7	47
39	0 = 1.0 + OME **P	FJ7	48
40	H = (OME - EPS)/V	FJ7	50
42	ODD = EVEN + CDD	FJ7	51
43	x = EPS + H/2.0 $EVEN = C.0$	FJ7	52 53
45	DO 48 I = 1, INT	FJ7	54
46	U = 1.0 - X**P EVEN = EVEN + (X**T)*(O**G)*ELOG (X)/SORT (D**Ty + EK2*(X**TP))	FJ7 FJ7	55 56
48	X = X + H	FJ7	57
49	AREA = (ENDS + 4.0*EVEN + 2.0*0DD)*H/6.0 B = ABSE(AREA1/AREA - 1.0) - ACC	FJ7 F.17	58 59
51	IF (R) 60, 60, 52	FJ7	60
52	IF (INT - 16384) 56, 53, 53	FJ7	61
54	FORMAT (27H J7(P,Q,S,T) NOT CONVERGENT)	FJ7	63
55	CALL SYSERR	FJ7	64 4 -
57	INT = 2+INT	FJ7	66
58	$V = 2 \cdot 0 \cdot V$	FJ7	67
59 60	FJ7 = AREA + EN	FJ7	- 68 69
61	RETURN	FJ7	70
	ENU	FJ7	71

REFERENCES

- 1. "Geometrical and Inertial Properties of a Class of Thin Shells of Revolution", by
 - Will J. Worley and Han-chung Wang

National Aeronautics and Space Administration, Grant No. NsG-434, N.A.S.A. Contractor Report CR-89, September, 1964, 208 pages.

 "Geometrical and Inertial Properties of a Class of Thin Shells of a General Type" by Will J. Worley and Han-chung Wang

> National Aeronautics and Space Administration, Grant No. NsG-434, Supplement No. 1, NASA Contractor Report CR-271, Aug. 1965, 67 pages.

3. "Minimum Weight Design of Cylindrical Shells" by

Walter Freiberger

Journal of Applied Mechanics, Vol. 23, No. 4., Trans. ASME, Dec. 1956, pp. 576-580.

- 4. "On the Optimum Design of Shells" by
 - R. T. Shield

Journal of Applied Mechanics, Vol. 27, No. 2, Trans. ASME, June 1960, pp. 316-322.

 "Numerical Analysis of Unsymmetrical Bending of Shells of Revolution" by B. Budiansky and P. P. Radkowski

AIAA Journal, Vol. 1, No. 8, Aug. 1963, pp. 1833-1842.

6. "Numerical Analysis of Equations of Thin Shell of Revolution" by

P. P. Radkowski, R. M. Davis and M. R. Bolduc,

- American Rocket Society Journal, Vol. 32, No. 1, Jan. 1962, pp. 36-41.
- "Analysis of Shells of Revolution Subjected to Symmetrical and Nonsymmetrical Loads" by
 - A. Kalnins

Journal of Applied Mechanics, Vol. 31, No. 3, Trans. ASME Sept. 1964, pp. 467-476. TABLE I ITERATION RESULTS FOR $\lambda = \lambda_1, \mu = \mu_1, b/a = 1, \alpha_0 = 1.5, \beta_0 = 1.5$

Step	α	β	$\frac{V}{2\pi ab^2}$	$\frac{W(\frac{o}{p_o})}{4\pi ab^2 \rho g}$	$\frac{t}{b}(\frac{\sigma_{o}}{p_{o}})$	F_{α}	F _β	Δα	riangle eta
1	1.5000	1.5000	.53743	.43810	. 5000	. 29499	.24269	. 0885	.0728
2	1.5885	1.5728	.56271	.44979	.5000	.27202	. 22630	.0816	.0679
3	1.6701	1.6407	. 58448	.46001	. 5000	.25255	.21206	.0758	.0636
4	1.7459	1.7043	.60343	. 46903	.5000	. 26893	.22758	.2228	. 1885
5	1.9686	1.8928	.65276	. 49306	. 5000	.83353	.72064	. 2501	.2162
6	2.2187	2.1090	.69862	.52328	.5069	28840	28654	0865	0860
7	2.1322	2.0231	.68274	.51165	.5035	05475	08112	0164	0243
8	2.1189	1.9915	.67861	. 50850	.5025	.01648	01889	.0049	0057
9	2.1288	1,9802	.67860	, 50846	.5024	.01672	01885	.0050	0057
10	2.1389	1.9689	.67859	.50841	.5024	.01689	01889	.0051	0057
11	2.1490	1.9575	.67859	.50837	.5023	.01705	01896	.0051	0057
12	2.1593	1.9461	.67858	.50832	.5023	.01721	01899	.0052	0057
13	2.1696	1.9347	.67856	.50827	.5022	.01756	01886	. 0053	0057
14	2.1801	1.9233	.67856	.50823	.5022	,01758	01905	.0053	0057
15	2.1998	1.9107	.67935	.50875	.5023	.00421	03187	.0021	0159
16	2.2151	1.8891	.67884	.50830	.5021	.01305	02400	.0065	0120
17	2.2323	1.8690	.67865	.50807	.5020	.01655	02106	.0083	0105
18	2.2505	1.8494	.67857	.50793	.5019	.01806	01998	.0090	0100
19	2.2692	1.8299	.67853	.50783	.5017	.01883	01960	.0094	0098
20	2.2883	1.8105	.67851	.50774	.5016	.01927	01957	.0096	0098
21	2.3078	1.7911	.67849	.50764	.5015	.01971	01951	. 0099	0098
22	2.3277	1.7716	.67847	.50754	.5014	.02008	01952	.0100	0098
23	2.3478	1.7521	.67846	.50745	.5013	.02044	01955	.0102	0098
24	2.3684	1,7326	.67844	.50735	.5012	.02080	01959	.0104	0098
25	2.3893	1,7130	.67843	.50725	.5011	.02116	01963	.0106	0098
26	2.4105	1.6933	.67842	.50715	.5010	.02153	-,01966	.0108	0098
27	2.4321	1.6737	.67840	.50704	. 5008	.02189	01968	.0110	0098
28	2.4541	1,6540	.67838	.50693	. 5007	.02227	01970	.0111	0099
29	2.4765	1.6343	.67837	.50681	. 5005	.02276	-,01955	.0114	0098
30	2.4992	1.6146	.67836	.50670	. 5004	.02310	-,01967	.0116	0098
31	2.5224	1.5948	.67834	.50659	.5003	.02345	01974	.0117	-,0099

TABLE II ITERATION RESULTS FOR $\lambda = \lambda_1, \mu = \mu_1, b/a = 1, \alpha_0 = 2.0, \beta_0 = 3.0$

Step	α	β	$\frac{V}{2\pi ab^2}$	$\frac{W(\frac{o}{p_0})}{4\pi ab^2 \rho g}$	$\frac{t}{b}(\frac{\sigma_{o}}{p_{o}})$	F_{α}	$\mathtt{F}_{oldsymbol{eta}}$	$\Delta lpha$	riangle eta
1	2.0000	3.0000	. 73915	.55381	.5151	99584	64496	2988	1935
2	1,7013	2,8065	.69653	.52338	. 5075	32702	21005	0981	-,0630
3	1,6031	2.7435	.68018	.51171	.5042	02135	03251	0064	0098
4	1.5967	2.7337	.67866	.51062	.5040	.01177	01391	.0035	0042
5	1.6003	2.7296	.67881	.51071	.5039	.00845	01582	.0025	0048
6	1.6028	2.7248	.67879	.51069	. 5039	.00887	01562	. 0027	0047
7	1.6055	2.7201	.67879	.51068	. 5039	.00886	01566	.0027	0047
8	1,6108	2.7107	.67879	.51066	.5039	.00893	01570	. 0027	0047
9	1.6162	2.7013	.67879	.51064	. 5039	.00900	01574	, 0027	0047
10	1.6270	2.6824	.67879	.51060	. 5039	.00914	01582	.0027	0047
11	1,6381	2.6634	.67876	.51055	.5039	.00955	01574	.0029	0047
12	1.6493	2.6443	.67877	.51051	. 5039	.00943	01598	.0028	~.0048
13	1.6607	2.6251	.67877	.51047	. 5039	.00958	01606	.0029	0048
14	1.6723	2.6058	, 6 7876	.51042	. 5039	. 00973	01615	.0029	0048
15	1,6840	2.5864	.67876	.51038	. 5038	. 00989	01623	.0030	0049
16	1,6960	2.5668	.67876	.51033	. 5038	.01005	0 1632	.0030	0049
17	1.7081	2.5472	.67875	.51028	.5038	.01022	01640	,0031	0049
18	1,7204	2.5275	.67875	,51023	. 5038	.0103 9	01649	.0031	-, 0050
19	1,7330	2.5077	.67875	.51018	.5038	.01056	- .0 1658	.0032	0050
20	1,7457	2.4877	.67874	.51012	. 5037	.01074	01667	. 0032	0050
21	1,7587	2.4677	.67874	.51007	.5037	.01093	01676	.0033	0050
22	1.7719	2.4475	.67874	.51001	. 5037	.01112	- .0 1685	.0033	0051
23	1,7853	2.4273	.67873	. 50996	.5036	.01131	01694	.0034	0051
24	1.7989	2.4071	,67873	.50990	. 5036	. 01147	0 1704	. 0034	0051
25	1.8128	2.3866	.67872	. 50984	. 5036	.01171	01711	, 0035	-,0051
26	1,8269	2,3660	.67 872	.50978	, 5035	. 011 92	01721	, 0036	-,0052
27	1,8412	2.3453	.67870	.50972	. 5035	, 01 20 5	01717	. 0036	-, 0052
28	1.8558	2,3247	.67870	. 50966	. 5035	.01251	0 1728	. 0038	0052
29	1.8708	2,3038	.67870	, 50958	. 5034	.01277	01734	.0038	0052
30	1.8860	2,2828	.67871	.50952	.5034	.01280	01758	,0038	0053

TABLE III ITERATION RESULTS FOR $\lambda = \lambda_1$, $\mu = \mu_1$, b/a = 2, $\alpha_0 = 1.5$, $\beta_0 = 1.5$

Step	α	β	$\frac{V}{2\pi ab^2}$	$\frac{W(\frac{o}{p_{o}})}{4\pi ab^{2}\rho g}$	$\frac{t}{b} \left(\frac{\sigma_{o}}{p_{o}} \right)$	F_{lpha}	F _β	Δα	$\Delta \beta$
1	1.5000	1.5000	. 53743	.62673	. 5000	. 29499	.24269	. 0885	.0728
2	1,5885	1.5728	.56271	.63813	.5000	.27202	,22630	.0816	.0679
3	1.6701	1.6407	. 58448	. 64838	.5000	.25255	.21206	.0758	.0636
4	1,7459	1.7043	.60343	.65763	.5000	26.8590	22.7980	. 2312	. 1963
5	1.9771	1.9006	.65449	.68397	.5000	.72402	.70662	.2172	.2120
6	2.1944	2.1126	.69661	.70714	. 5000	06577	.03817	0197	.0115
7	2.1303	2.1692	.69507	.70564	.5000	04389	.05289	0132	.0159
8	2.0792	2.2325	.69515	.70509	.5000	04058	.05212	0122	.0156
9	2.0317	2.2945	.69528	.70462	. 5000	03797	.05084	0114	.0153
10	1.9872	2.3549	.69540	.70419	.5000	03561	.04950	0107	.0149
11	1.9455	2.4137	.69553	.70380	.5000	03342	.04814	0100	.0144
12	1.9063	2.4709	.69566	.70343	.5000	-,03135	.04680	0094	.0140
13	1.8696	2.5264	.69579	.70310	. 5000	-,02940	.04543	0088	.0136
14	1.8012	2,6200	.69601	.70259	.5000	02680	. 04309	0161	.0259
15	1.7494	2.7211	.69626	.70210	. 5000	02346	.04044	0141	.0243
16	1.6956	2.8159	.69650	.70169	. 5000	02089	.03796	0125	.0228
17	1.6475	2.9049	.69673	.70135	.5000	01870	.03561	0112	.0214
18	1.6043	2.9883	.69695	.70107	.5000	01680	. 03339	0101	.0200
19	1.5656	3.0666	.69716	.70084	.5000	01515	.03132	0091	.0188
20	1.5305	3.1400	.69736	.70065	.5000	01370	.02938	0082	.0176
21	1.5065	3.1920	.69751	.70053	.5000	01273	.02801	0076	.0168
22	1.4770	3.2577	.69769	.70040	. 5000	01159	.02628	0070	.0158
23	1.4502	3,3195	.69789	.70030	. 5000	01091	.02453	0065	.0147
24	1.4256	3.3773	.69803	.70020	. 5000	00966	.02317	0058	.0139
25	1.4032	3.4316	.69816	.70013	. 5000	00884	.02178	-,0053	.0131
26	1.3826	3,4827	.69835	.70007	.5000	00817	.02043	0049	.0123
27	1.3636	3.5306	. 69849	.70002	. 5000	00747	.01923	0045	.0115
28	1.3463	3.5757	.69862	.69999	. 5000	00688	.01809	0041	.0109
29	1.3302	3.6182	.69875	.69997	.5000	00641	.01702	0038	.0102
30	1.3154	3.6582	.69887	.69996	.5000	00590	.01601	0035	. 0096
31	1.3017	3.6957	.69898	.69995	.5000	00544	.01509	0033	.0091

TABLE IV ITERATION RESULTS FOR $\lambda = \lambda_1$, $\mu = \mu_1$, b/a = 2, $\alpha_0 = 2.0$, $\beta_0 = 3.0$

Step	α	β	$\frac{V}{2\pi ab^2}$	$\frac{W(\frac{o}{p_o})}{4\pi ab^2 \rho g}$	$\frac{t}{b}(\frac{\sigma_{o}}{p_{o}})$	F_{α}	F_{eta}	$\Delta \alpha$	$\Delta \beta$
1	2.0000	3,0000	.73915	.72761	.5000	46258	21858	1388	0656
2	1.8612	2.9344	.72206	.71693	.5000	31011	12583	0930	0378
3	1.7682	2.8967	. 70998	. 70953	.5000	18587	05414	0558	0162
4	1.7124	2.8804	.70272	.70513	.5000	10019	00669	0301	0020
5	1,6824	2.8784	.69912	.70294	.5000	0 5 330	.01847	0160	. 0055
6	1.6664	2.8840	.69761	. 70199	.5000	03224	.02937	0097	.0088
7	1.6567	2.8928	.69704	.70160	.5000	02379	.03344	0071	. 0100
8	1.6496	2.9028	.69685	.70143	.5000	02050	. 03476	0062	. 0104
9	1,6434	2.9132	.69680	.70135	.5000	01915	.03506	0058	.0105
10	1.6377	2,9238	.69680	.70130	. 5000	01851	. 03498	0056	.0105
11	1.6161	2,9653	.69689	.70115	.5000	01735	.03398	0052	.0102
12	1.5957	3,0056	.69700	.70102	.5000	01646	.03292	0049	. 0099
13	1.5763	3.0446	.69711	.70090	.5000	01563	.03188	0047	. 0096
14	1.5579	3.0825	.69721	.70080	. 5000	01485	. 03088	0045	. 0093
15	1.5361	3,1281	.69733	. 70068	.5000	01392	. 02969	0084	.0178
16	1.5039	3.1977	.69752	.70052	.5000	01263	.02786	0076	.0167
17	1.4746	3,2630	.69770	.70039	. 5000	01148	.02615	0069	.0157
18	1.4480	3.3243	.69790	. 70028	. 5000	01048	.02455	0063	.0147
19	1.4237	3.3818	.69804	.70019	.5000	00958	.02306	0058	. 0138
20	1.4014	3.4359	.69820	.70012	.5000	00878	.02167	0053	. 0130
21	1.3809	3.4867	.6 9840	. 70007	. 5000	00811	.02033	0049	. 0122

TABLE V ITERATION RESULTS FOR $\lambda = \lambda_2, \mu = \mu_2, b/a = 1$

Step	α	β	$\frac{V}{2\pi ab^2}$	$\frac{W(\frac{o}{p_{o}})}{4\pi ab^{2}\rho g}$	$\frac{t}{b}(\frac{\sigma_{o}}{p_{o}})$	F_{α}	$F_{oldsymbol{eta}}$	Δα	Δeta
1	3.0000	3.0000	.80611	.60146	.5238	05923	05224	1777	-,1567
2	2.8223	2.8433	.78954	.58952	.5219	06529	05730	1959	1719
3	2.6265	2,6714	.76878	. 57453	.5192	07086	-,06187	2126	1856
4	2.4139	2.4858	.74268	.55566	.5153	07227	06293	2168	1888
5	2.1971	2.2970	.71143	. 53294	.5097	05642	04991	-,1693	1497
6	2.0278	2.1473	.68281	.51206	. 5039	00851	01119	0255	0336
7	2.0023	2.1137	.67719	.50794	. 5026	.00605	.00053	.0182	.0016
8	2.0205	2.1153	.67928	.50944	.5030	.00046	00402	.0014	0121
1	2.5000	2.5000	.75000	.56092	.5164	07211	06410	0721	0641
2	2.4279	2.4359	.74052	.55404	.5149	-,07125	06341	0713	-,0634
3	2.3566	2.3725	.73062	.54684	.5132	-,06854	06117	0685	0612
4	2.2881	2.3113	.72056	. 53951	.5114	-,06330	05683	0633	0568
5	2.2248	2.2545	.71074	. 53233	. 5095	05507	05002	0551	-,0500
6	2.1697	2,2045	.70172	.52577	.5077	04418	04101	0442	0410
7	2.1256	2.1635	.69414	. 52022	.5062	-,03206	03100	0321	0310
8	2.0935	2,1325	.68835	.51599	. 5049	02082	02172	0208	0217
9	2.0727	2.1108	.68437	.51307	. 5041	01202	01445	0120	0145
10	2.0607	2,0963	.68188	.51123	.5035	00605	00952	0061	0095
11	2.0546	2,0868	.68041	.51015	.5032	00239	00650	0024	0065
1	4.0000	2.0000	. 80000	. 59625	.5212	04804	07411	0480	0741
2	3.9520	1,9259	.79348	.59140	. 5203	04939	07776	0494	0778
3	3.9026	1.8481	.78631	.58605	.5192	05070	08166	0507	0817
4	3.8519	1.7665	.77837	.58011	.5178	05189	08576	0519	0858
5	3,8000	1.6807	.76958	.57350	.5163	05282	08990	0528	0899
6	3.7472	1.5908	.75982	.56610	.5144	05324	09376	0532	0938
7	3.6939	1.4971	. 74898	.55782	.5122	-,05273	09669	0527	0967
8	3.6412	1.4004	. 73704	. 54864	. 5096	05063	09744	0506	0974
9	3.5906	1.3029	.72414	.53862	. 5065	04591	09385	0459	0939
10	3.5447	1.2091	.71082	.52814	. 5030	03744	08295	0374	-,0830
11	3,5072	1.1261	,69826	.51874	. 4994	~.00550	-,00138	0055	0014

TABLE VI ITERATION RESULTS FOR $\lambda = \lambda_3$, $\mu = \mu_3$, b/a = 1

.

Step	α	β	$\frac{V}{2\pi ab^2}$	$\frac{W(\frac{o}{p_0})}{4\pi ab^2 \rho g}$	$\frac{t}{b}(\frac{\sigma_{o}}{p_{o}})$	F_{α}	F_{β}	$\Delta \alpha'$	riangle eta
1	1.5000	1,5000	. 53743	. 43810	.5000	. 29499	. 24269	. 1838	, 1512
2	1.6838	1.6512	.58787	.46162	.5000	. 24949	. 20988	.2121	. 1784
3	1.8959	1.8296	.63745	. 48553	.5000	. 10529	. 09039	. 2106	. 1808
4	2.1064	2.0104	.67902	. 50889	. 5026	. 03332	.02410	. 0667	, 0482
5	2,1731	2.0586	.68997	. 51692	. 5050	. 02556	, 01793	. 0511	, 0359
6	2.2242	2.0944	.69793	. 52274	.5067	. 02035	. 01376	. 0407	. 0275
7	2.3259	2.1606	.71246	.53335	.5100	.01173	. 00680	. 0235	.0136
8	2.3868	2.1937	.72019	.53898	.5110	.00761	.00342	,0152	. 0069
9	2.4274	2.2100	.72473	. 54228	.5118	. 00532	.00153	. 0107	, 0031
10	2.4380	2.2131	.72584	. 54306	.5120	.00479	. 00109	. 0096	, 0022
1	2.5000	3.0000	.77759	.58111	.5206	01458	01210	0292	0242
2	2.4709	2,9758	.77447	.57887	. 5202	01373	01149	0275	0230
3	2.4434	2.9528	.77145	.57670	.5198	01286	01088	0257	0218
4	2.4177	2.9311	.76856	. 57463	.5194	01199	01027	0240	0205
5	2.3937	2.9105	.76581	.57265	.5190	01112	00966	0222	0193
6	2.3715	2.8912	.76320	. 57077	.5187	01025	-,00906	0205	0181
7	2.3150	2.8403	.75626	. 56578	.5177	00778	00736	0156	0147
8	2.2728	2.7992	.75070	.56178	.5168	-,00562	00590	0112	0118
9	2.2428	2.7663	.74642	. 55869	.5162	00385	00471	0077	0094
10	2.2284	2.7482	.74419	. 55708	.5158	00288	00406	0058	0081
1	3.0000	2.0000	.75000	.56001	.5151	00521	00949	0104	~.0190
2	2,9896	1,9810	.74796	. 55847	.5148	00455	00885	0091	0177
3	2,9805	1.9633	,74606	.55707	.5144	00393	00825	0079	-,0165
4	2.9726	1.9468	.74430	.55576	.5141	00334	00767	0067	0153
5	2.9603	1.9172	.74123	. 55346	.5135	00229	00663	0046	0133
6	2.9521	1.8916	.73869	.55154	. 5130	00140	00575	0028	0115
7	2.9473	1.8694	.73660	. 54997	.5126	-,00066	00500	0013	0100
8	2.9460	1.8594	,73570	.54930	.5124	00034	00468	0007	0094

Fig. 2 Weighting Functions λ_2 and μ_2

Fig.5 Variation in V_{xa}/ah^2 with \propto and β

Fig.6 Variation in A/a^2 with α and β for b/a = 1.0

Recent T. & A. M. Reports

*

<u>No.</u>	Title	Date
263	"Evaluation of Bonding Characteristics of Deformed Wire," by Russell S. Jensen and Clyde E. Kesler.	May, 1964
264	"Geometrical and Inertial Properties of a Class of Thin Shells of a General Type," by Will J. Worley and Han-chung Wang.	June, 1964
265	"The Fatigue Toughness of Metals: A Data Compilation," by Gary R. Halford.	June, 1964
266	"On a Theory for Axisymmetric Elastic Shells of Moderate Thickness," by R. J. Nikolai and A. P. Boresi.	July, 1964
267	"The Stress Distribution in a Notched Semi-infinite Plate," by D. Shadman.	August, 1964
268	"Yield Behavior of Niobium Single Crystals," by D. C. Huffaker.	September, 1964
269	"Euler Buckling of a Ring-Reinforced Cylindrical Shell Subjected to External Pressure," by H. L. Langhaar, A. P. Boresi and C. C. Fretwell.	September, 1964
270	"Photoelastic Study of the Stresses Near Openings in Pressure Vessels," by N. C. Lind and C. E. Taylor.	October, 1964
271	"Theoretical and Experimental Investigation of the Tensile Moduli of Parallel Filament Composites," by John W. Melvin.	November, 1964
272	"Third Conference on Fundamental Research in Plain Concrete," by Clyde E. Kesler.	November, 1964
273	"The Effect of Temperature on Cycle Dependent Deformation," by Brian R. Gain.	December, 1964
274	"An Investigation Into the Effect of Environmental Treatments on the Strength of E Glass Fibers," by N. M. Cameron.	January, 1965
275	"Crack Extension in Fiberglass Reinforced Plastics and a Critical Examination of the General Fracture Criterion," by E. M. Wu and R. C. Reuter, Jr.	January, 1965
276	"Applications of Lasers to Photoelasticity," by C. E. Taylor, C. E. Bowman, W. P. North, and W. F. Swinson.	February, 1965

· .

ŧ.

1

•

-