28 research outputs found

    Sub-Ό\mu structured Lotus Surfaces Manufacturing

    Get PDF
    Sub-micro structured surfaces allow modifying the behavior of polymer films or components. Especially in micro fluidics a lotus-like characteristic is requested for many applications. Structure details with a high aspect ratio are necessary to decouple the bottom and the top of the functional layer. Unlike to stochastic methods, patterning with a LIGA-mold insert it is possible to structure surfaces very uniformly or even with controlled variations (e.g. with gradients). In this paper we present the process chain to realize polymer sub-micro structures with minimum lateral feature size of 400 nm and up to 4 micrometers high.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Snake‐Inspired, Nano‐Stepped Surface with Tunable Frictional Anisotropy Made from a Shape‐Memory Polymer for Unidirectional Transport of Microparticles

    Get PDF
    The ventral scales of many snake species are decorated with oriented micro‐fibril structures featuring nano‐steps to achieve anisotropic friction for efficient locomotion. Here, a nano‐stepped surface with tunable frictional anisotropy inspired by this natural structure is presented. It is fabricated by replicating the micro‐fibril structure of the ventral scales of the Chinese cobra (Naja atra) into a thermo‐responsive shape‐memory polymer via hot embossing. The resulting smart surface transfers from a flat topography to a predefined structure of nano‐steps upon heating. During this recovery process, the nano‐steps grow out of the surfaces resulting in a surface with frictional anisotropy, which is characterized in situ by an atomic force microscopy. The desired frictional anisotropy can be customized by stopping the heating process before full recovery. The nano‐stepped surface is employed for the unidirectional transport of microscale particles through small random vibrations. Due to the frictional anisotropy, the microspheres drift unidirectionally (down the nano‐steps). Finally, dry self‐cleaning is demonstrated by the transportation of a pile of microparticles

    Bio-inspired, large scale, highly-scattering films for nanoparticle-alternative white surfaces

    Get PDF
    Inspired by the white beetle of the genus Cyphochilus, we fabricate ultra-thin, porous PMMA films by foaming with CO_2 saturation. Optimising pore diameter and fraction in terms of broad-band reflectance results in very thin films with exceptional whiteness. Already films with 60 ”m-thick scattering layer feature a whiteness with a reflectance of 90%. Even 9 ”m thin scattering layers appear white with a reflectance above 57%. The transport mean free path in the artificial films is between 3.5 ”m and 4 ”m being close to the evolutionary optimised natural prototype. The bio-inspired white films do not lose their whiteness during further shaping, allowing for various applications

    Selective filtration of oil/water mixtures with bioinspired porous membranes

    Get PDF
    Membranes inspired by special wetting properties of aquatic plant leaves enable selective removal of either oil or water from oil/water mixtures by filtration. Here, we introduce polymeric micro- and nanohaircovered porous membranes fabricated using highly scalable fabrication methods: hot pulling and perforation with microneedles. The as-prepared superhydrophobic/superoleophilic oil-removing membranes are converted into underwater superoleophobic water-removing membranes by argon plasma treatment. Membrane permeability and breakthrough pressures are analyzed and compared to theory, and the efficiency of both types of membranes for oil/water separation is demonstrated

    Laminated Perovskite Photovoltaics: Enabling Novel Layer Combinations and Device Architectures

    Get PDF
    High‐efficiency perovskite‐based solar cells can be fabricated via either solution‐processing or vacuum‐based thin‐film deposition. However, both approaches limit the choice of materials and the accessible device architectures, due to solvent incompatibilities or possible layer damage by vacuum techniques. To overcome these limitations, the lamination of two independently processed half‐stacks of the perovskite solar cell is presented in this work. By laminating the two half‐stacks at an elevated temperature (≈90 °C) and pressure (≈50 MPa), the polycrystalline perovskite thin‐film recrystallizes and the perovskite/charge transport layer (CTL) interface forms an intimate electrical contact. The laminated perovskite solar cells with tin oxide and nickel oxide as CTLs exhibit power conversion efficiencies of up to 14.6%. Moreover, they demonstrate long‐term and high‐temperature stability at temperatures of up to 80 °C. This freedom of design is expected to access both novel device architectures and pairs of CTLs that remain usually inaccessible

    Laminated Monolithic Perovskite/Silicon Tandem Photovoltaics

    Get PDF
    Perovskite/silicon tandem photovoltaics have attracted enormous attention in science and technology over recent years. In order to improve the performance and stability of the technology, new materials and processes need to be investigated. However, the established sequential layer deposition methods severely limit the choice of materials and accessible device architectures. In response, a novel lamination process that increases the degree of freedom in processing the top perovskite solar cell (PSC) is proposed. The very first prototypes of laminated monolithic perovskite/silicon tandem solar cells with stable power output efficiencies of up to 20.0% are presented. Moreover, laminated single-junction PSCs are on par with standard sequential layer deposition processed devices in the same architecture. The numerous advantages of the lamination process are highlighted, in particular the opportunities to engineer the perovskite morphology, which leads to a reduction of non-radiative recombination losses and and an enhancement in open-circuit voltage (Voc). Laminated PSCs exhibit improved stability by retaining their initial efficiency after 1-year aging and show good thermal stability under prolonged illumination at 80 °C. This lamination approach enables the research of new architectures for perovskite-based photovoltaics and paves a new route for processing monolithic tandem solar cells even with a scalable lamination process
    corecore