38 research outputs found

    Comparison of the microbial population in rabbits and guinea pigs by next generation sequencing

    Get PDF
    <div><p>This study aimed to determine the microbial composition of faeces from two groups of caecotrophagic animals; rabbits and guinea pigs. In addition the study aimed to determine the community present in the different organs in the rabbit. DNA was extracted from seven of the organs in wild rabbits (n = 5) and from faecal samples from domesticated rabbits (n = 6) and guinea pigs (n = 6). Partial regions of the small ribosomal sub-unit were amplified by PCR and then the sequences present in each sample were determined by next generation sequencing. Differences were detected between samples from rabbit and guinea pig faeces, suggesting that there is not a microbial community common to caecotrophagic animals. Differences were also detected in the different regions of the rabbits’ digestive tracts. As with previous work, many of the organisms detected were Firmicutes or unclassified species and there was a lack of Fibrobacteres, but for the first time we observed a high number of Bacteroidetes in rabbit samples. This work re-iterates high levels of Firmicutes and unclassified species are present in the rabbit gut, together with low number of Fibrobacteres. This suggests that in the rabbit gut, organisms other than the Fibrobacteres must be responsible for fibre digestion. However observation of high numbers of Bacteroidetes suggests that this phylum may indeed have a role to play in digestion in the rabbit gut.</p></div

    Molecular phylogeny of Spirodinium equi, Triadinium caudatum and Blepharocorys sp. From the equine hindgut

    Get PDF
    Single cell morphotypes of the species Triadinium caudatum and Spirodinium equi, together with a representative of the genus Blepharocorys (Blepharocorys sp.) were used for phylogenetic analysis based on their 18S rRNA genes. Spirodinium equi clustered with sequences already described for the entodiniomorphs isolated from horses and the Blepharocorys sp. also grouped within the Entodiniomorphida clade, although both sequences were distinct from those described from rumen ciliates. Triadinium caudatum clustered within the Vestibuliferida, and most closely to that of Paraisotricha, only other member of this order which has been described in the horse. It was concluded that although members of the orders Entodiniomorphida and Vestibuliferida are present in the equine gut, and that they share an ancient linage with their rumen counterparts, they are ancestrally different groups

    Identification and Characterization of Three Novel Lipases Belonging to Families II and V from Anaerovibrio lipolyticus 5ST

    Get PDF
    Following the isolation, cultivation and characterization of the rumen bacterium Anaerovibrio lipolyticus in the 1960s, it has been recognized as one of the major species involved in lipid hydrolysis in ruminant animals. However, there has been limited characterization of the lipases from the bacterium, despite the importance of understanding lipolysis and its impact on subsequent biohydrogenation of polyunsaturated fatty acids by rumen microbes. This study describes the draft genome of Anaerovibrio lipolytica 5ST, and the characterization of three lipolytic genes and their translated protein. The uncompleted draft genome was 2.83 Mbp and comprised of 2,673 coding sequences with a G+C content of 43.3%. Three putative lipase genes, alipA, alipB and alipC, encoding 492-, 438- and 248- amino acid peptides respectively, were identified using RAST. Phylogenetic analysis indicated that alipA and alipB clustered with the GDSL/SGNH family II, and alipC clustered with lipolytic enzymes from family V. Subsequent expression and purification of the enzymes showed that they were thermally unstable and had higher activities at neutral to alkaline pH. Substrate specificity assays indicated that the enzymes had higher hydrolytic activity against caprylate (C8), laurate (C12) and myristate (C14)

    A tankönyvellátás változásai a rendszerváltozás után

    Get PDF
    <p>Percentage of each phylum present in fresh faecal samples collected from domesticated rabbits and rectal samples collected from wild rabbits together with the percentage of sequences which could not be classified within a particular phylum.</p

    The equine gastrointestinal microbiome: impacts of weight-loss

    Get PDF
    BACKGROUND: Obesity is an important equine welfare issue. Whilst dietary restriction is the most effective weight-loss tool, individual animals range in their weight-loss propensity. Gastrointestinal-derived bacteria play a fundamental role in host-health and have been associated with obesity and weight-loss in other species. This study evaluated the faecal microbiome (next-generation sequencing of 16S rRNA genes) of 15 obese Welsh Mountain pony mares, in the same 11-week period across 2 years (n = 8 Year 1; n = 7 Year 2). Following a 4-week acclimation period (pre-diet phase) during which time individuals were fed the same hay to maintenance (2% body mass (BM) as daily dry matter (DM) intake), animals underwent a 7-week period of dietary restriction (1% BM hay as daily DM intake). Faeces were sampled on the final 3 days of the pre-diet phase and the final 3 days of the dietary restriction phase. Bacterial communities were determined using Next Generation Sequencing of amplified V1-V2 hypervariable regions of bacterial 16S rRNA.RESULTS: Losses in body mass ranged from 7.11 to 11.59%. Changes in the faecal microbiome composition following weight-loss included a reduction in the relative abundance of Firmicutes and Tenericutes and a reduction in indices of bacterial diversity. Pre-diet diversity was negatively associated with weight-loss. Pre-diet faecal acetate concentration was a strong predictor of subsequent weight-loss and negatively associated with Sphaerochaeta (Spirochaetes phylum) abundance. When animals were divided into 3 groups (high, mid, low) based overall weight loss, pre-diet bacterial community structure was found to have the greatest divergence between the high and low weight-loss groups (R = 0.67, p &lt;  0.01), following PERMANOVA and ANOSIM analysis.CONCLUSIONS: Weight-loss in this group of ponies was associated with lower pre-diet faecal bacterial diversity and greater pre-diet acetate concentration. Overall, these data support a role for the faecal microbiome in weight-loss propensity in ponies and provide a baseline for research evaluating elements of the faecal microbiome in predicting weight-loss success in larger cohorts.</p

    Effect of age and the individual on the gastrointestinal bacteriome of ponies fed a high-starch diet

    Get PDF
    Bacteria residing in the gastrointestinal tract of mammals are crucial for the digestion of dietary nutrients. Bacterial community composition is modified by age and diet in other species. Although horses are adapted to consuming fibre-based diets, high-energy, often high-starch containing feeds are increasingly used. The current study assessed the impact of age on the faecal bacteriome of ponies transitioning from a hay-based diet to a high-starch diet. Over two years, 23 Welsh Section A pony mares were evaluated (Controls, 5-15 years, n = 6/year, 12 in total; Aged, ≥19 years, n = 6 Year 1; n = 5 Year 2, 11 in total). Across the same 30-week (May to November) period in each year, animals were randomly assigned to a 5-week period of study and were individually fed the same hay to maintenance (2% body mass as daily dry matter intake) for 4-weeks. During the final week, 2g starch per kg body mass (micronized steam-flaked barley) was incorporated into the diet (3-day transition and 5 days at maximum). Faecal samples were collected for 11 days (final 3 days hay and 8 days hay + barley feeding). Bacterial communities were determined using Ion Torrent Sequencing of amplified V1-V2 hypervariable regions of 16S rRNA. Age had a minimal effect on the bacteriome response to diet. The dietary transition increased Candidatus Saccharibacteria and Firmicutes phyla abundance and reduced Fibrobactres abundance. At the genera level, Streptococcus abundance was increased but not consistently across individual animals. Bacterial diversity was reduced during dietary transition in Streptococcus 'responders'. Faecal pH and VFA concentrations were modified by diet but considerable inter-individual variation was present. The current study describes compositional changes in the faecal bacteriome associated with the transition from a fibre-based to a high-starch diet in ponies and emphasises the individual nature of dietary responses, which may reflect functional differences in the bacterial populations present in the hindgut

    The equine gastrointestinal microbiome: impacts of weight-loss

    Get PDF
    Context. The formation of water on the dust grains in the interstellar medium may proceed with hydrogen peroxide (H2O2) as an intermediate. Recently gas-phase H2O2 has been detected in {\rho} Oph A with an abundance of ~1E-10 relative to H2. Aims. We aim to reproduce the observed abundance of H2O2 and other species detected in {\rho} Oph A quantitatively. Methods. We make use of a chemical network which includes gas phase reactions as well as processes on the grains; desorption from the grain surface through chemical reaction is also included. We run the model for a range of physical parameters. Results. The abundance of H2O2 can be best reproduced at ~6E5 yr, which is close to the dynamical age of {\rho} Oph A. The abundances of other species such as H2CO, CH3OH, and O2 can be reasonably reproduced also at this time. In the early time the gas-phase abundance of H2O2 can be much higher than the current detected value. We predict a gas phase abundance of O2H at the same order of magnitude as H2O2, and an abundance of the order 1E-8 for gas phase water in {\rho} Oph A. A few other species of interest are also discussed. Conclusions. We demonstrate that H2O2 can be produced on the dust grains and released into the gas phase through non-thermal desorption via surface exothermic reactions. The H2O2 molecule on the grain is an important intermediate in the formation of water. The fact that H2O2 is over-produced in the gas phase for a range of physical conditions suggests that its destruction channel in the current gas phase network may be incomplete.Comment: Accepted for publication in A&

    The Equine Gastrointestinal Microbiome:Impacts of Age and Obesity

    Get PDF
    Gastrointestinal microbial communities are increasingly being implicated in host susceptibilities to nutritional/metabolic diseases; such conditions are more prevalent in obese and/or older horses. This controlled study evaluated associations between host-phenotype and the fecal microbiome / metabolome. Thirty-five, Welsh Mountain pony mares were studied across 2 years (Controls, n = 6/year, 5–15 years, Body Condition Score (BCS) 4.5–6/9; Obese, n = 6/year, 5–15 years, BCS > 7/9; Aged, n = 6 Year 1; n = 5 Year 2, ≥19 years old). Animals were individually fed the same hay to maintenance (2% body mass as daily dry matter intake) for 2 (aged / obese) or 4 (control), 4-week periods in a randomized study. Outset phenotype was determined (body fat%, markers of insulin sensitivity). Feces were sampled on the final 3 days of hay feeding-periods and communities determined using Next Generation Sequencing of amplified V1–V2 hypervariable regions of bacterial 16S rRNA. Copy numbers for fecal bacteria, protozoa and fungi were similar across groups, whilst bacterial diversity was increased in the obese group. Dominant bacterial phyla in all groups were Bacteroidetes > Firmicutes > Fibrobacter. Significant differences in the bacterial communities of feces were detected between host-phenotype groups. Relative to controls, abundances of Proteobacteria were increased for aged animals and Bacteroidetes, Firmicutes, and Actinobacteria were increased for obese animals. Over 500 bacterial operational taxonomic units (OTUs) differed significantly between host-phenotype groups. No consistent pattern of changes in discriminant OTUs between groups were maintained across groups and between years. The core bacterial populations contained 21 OTUs, 6.7% of recovered sequences. Distance-based Redundancy Analyses separated fecal bacterial communities with respect to markers of obesity and insulin dysregulation, as opposed to age. Host-phenotype had no impact on the apparent digestibility of dietary GE or DM, fecal volatile fatty acid concentrations or the fecal metabolome (FT-IR). The current study demonstrates that host-phenotype has major effects on equine fecal microbial population structure. Changes were predominantly associated with the obese state, confirming an obesity-associated impact in the absence of nutritional differences. Clear biomarkers of animal-phenotype were not identified within either the fecal microbiome or metabolome, suggesting functional redundancy within the gut microbiome and/or metabolome.</p

    Strong Stability and Host Specific Bacterial Community in Faeces of Ponies

    Get PDF
    The horse, as a hindgut fermenter, is reliant on its intestinal bacterial population for efficient diet utilisation. However, sudden disturbance of this population can result in severe colic or laminitis, both of which may require euthanasia. This study therefore aimed to determine the temporal stability of the bacterial population of faecal samples from six ponies maintained on a formulated high fibre diet. Bacterial 16S rRNA terminal restriction fragment length polymorphism (TRFLP) analyses of 10 faecal samples collected from 6 ponies at regular intervals over 72 hour trial periods identified a significant pony-specific profile (P<0.001) with strong stability. Within each pony, a significantly different population was found after 11 weeks on the same diet (P<0.001) and with greater intra-individual similarity. Total short chain fatty acid (SCFA) concentration increased in all ponies, but other changes (such as bacterial population diversity measures, individual major SCFA concentration) were significant and dependent on the individual. This study is the first to report the extent of stability of microbes resident in the intestinal tract as represented with such depth and frequency of faecal sampling. In doing so, this provides a baseline from which future trials can be planned and the extent to which results may be interpreted
    corecore