2,259 research outputs found

    A New Class of Materials Based on Nanoporous High Entropy Alloys with Outstanding Properties

    Full text link
    Nanoporous metals with a random, bicontinuous structure of both pores and ligaments exhibit many unique mechanical properties, but their technical applications are often limited by their intrinsic brittleness under tensile strain triggered by fracture of the weakest ligaments. Here, we use molecular dynamics simulations to study the mechanical behavior and thermal stability of two different bicontinuous nanoporous high entropy alloys, Al0.1CoCrFeNi and NbMoTaW. To isolate the properties related to the nanoporous nature of our samples, we also studied the corresponding bulk and nanocrystalline systems. The results demonstrate that the specific modulus of nanoporous HEAs are 2 to 3 times greater than that of single element nanoporous materials with specific strength reaching values 5 to 10 times higher, comparable to bulk metals with the highest specific strength. Bicontinuous HEAs also displayed excellent resistance to thermal degradation as evidenced by the absence of coarsening ligaments up to temperatures of 1273 K which ensures the durability and reliability in high-temperature applications. The findings uncover unprecedented mechanical and thermal properties of bicontinuous nanoporous high entropy alloys, paving the way for their promising utilization in advanced engineering and structural applications

    Predicting Coupled Electron and Phonon Transport Using Steepest-Entropy-Ascent Quantum Thermodynamics

    Full text link
    The current state of the art for determining thermoelectric properties is limited to the investigation of electrons or phonons without including the inherent electron-phonon coupling that is in all materials. This gives rise to limitations in accurately calculating base material properties that are in good agreement with experimental data. Steepest-entropy-ascent quantum thermodynamics is a general non-equilibrium thermodynamic ensemble framework that provides a general equation of motion for non-equilibrium system state evolution. This framework utilizes the electron and phonon density of states as input to compute material properties, while taking into account the electron-phonon coupling. It is able to span across multiple spatial and temporal scales in a single analysis. Any system's thermoelectric properties can, therefore, be attained provided the accurately determined density of states is available.Comment: Supplementary Materials Section is the last two pages of the manuscrip

    Biofilm Origin of Clay-Coated Sand Grains

    Get PDF
    The presence of clay-sized particles and clay minerals in modern sands and ancient sandstones has long presented an interesting problem, because primary depositional processes tend to lead to physical separation of fine- and coarse-grained materials. Numerous processes have been invoked to explain the common presence of clay minerals in sandstones, including infiltration, the codeposition of flocculated muds, and bioturbation-induced sediment mixing. How and why clay minerals form as grain coats at the site of deposition remains uncertain, despite clay-coated sand grains being of paramount importance for subsequent diagenetic sandstone properties. We have identified a new biofilm mechanism that explains clay material attachment to sand grain surfaces that leads to the production of detrital clay coats. This study focuses on a modern estuary using a combination of field work, scanning electron microscopy, petrography, biomarker analysis, and Raman spectroscopy to provide evidence of the pivotal role that biofilms play in the formation of clay-coated sand grains. This study shows that within modern marginal marine systems, clay coats primarily result from adhesive biofilms. This bio-mineral interaction potentially revolutionizes the understanding of clay-coated sand grains and offers a first step to enhanced reservoir quality prediction in ancient and deeply buried sandstones

    Characterization of Aura TES carbonyl sulfide retrievals over ocean

    Get PDF
    We present a description of the NASA Aura Tropospheric Emission Spectrometer (TES) carbonyl sulfide (OCS) retrieval algorithm for oceanic observations, along with evaluation of the biases and uncertainties using aircraft profiles from the HIPPO (HIAPER Pole-to-Pole Observations) campaign and data from the NOAA Mauna Loa site. In general, the OCS retrievals (1) have less than 1.0 degree of freedom for signals (DOFs), (2) are sensitive in the mid-troposphere with a peak sensitivity typically between 300 and 500 hPa, (3) but have much smaller systematic errors from temperature, CO<sub>2</sub> and H<sub>2</sub>O calibrations relative to random errors from measurement noise. We estimate the monthly means from TES measurements averaged over multiple years so that random errors are reduced and useful information about OCS seasonal and latitudinal variability can be derived. With this averaging, TES OCS data are found to be consistent (within the calculated uncertainties) with NOAA ground observations and HIPPO aircraft measurements. TES OCS data also captures the seasonal and latitudinal variations observed by these in situ data

    Aerosol information content analysis of multi-angle high spectral resolution measurements and its benefit for high accuracy greenhouse gas retrievals

    Get PDF
    New generations of space-borne spectrometers for the retrieval of atmospheric abundances of greenhouse gases require unprecedented accuracies as atmospheric variability of long-lived gases is very low. These instruments, such as GOSAT and OCO-2, typically use a high spectral resolution oxygen channel (O_2 A-band) in addition to CO_2 and CH_4 channels to discriminate changes in the photon path-length distribution from actual trace gas amount changes. Inaccurate knowledge of the photon path-length distribution, determined by scatterers in the atmosphere, is the prime source of systematic biases in the retrieval. In this paper, we investigate the combined aerosol and greenhouse gas retrieval using multiple satellite viewing angles simultaneously. We find that this method, hitherto only applied in multi-angle imagery such as from POLDER or MISR, greatly enhances the ability to retrieve aerosol properties by 2–3 degrees of freedom. We find that the improved capability to retrieve aerosol parameters significantly reduces interference errors introduced into retrieved CO_2 and CH_4 total column averages. Instead of focussing solely on improvements in spectral and spatial resolution, signal-to-noise ratios or sampling frequency, multiple angles reduce uncertainty in space based greenhouse gas retrievals more effectively and provide a new potential for dedicated aerosols retrievals

    Inversion analysis of carbon monoxide emissions using data from the TES and MOPITT satellite instruments

    No full text
    International audienceWe conduct an inverse modeling analysis of measurements of atmospheric CO from the TES and MOPITT satellite instruments using the GEOS-Chem global chemical transport model. This is the first quantitative analysis of the consistency of the information provided by these two instruments on surface emissions of CO in an inverse modeling context. We focus on observations of CO for November 2004, when the climatological emission inventory in the GEOS-Chem model significantly underestimated the atmospheric abundance of CO as observed by TES and MOPITT. We find that both datasets suggest significantly greater emissions of CO from sub-equatorial Africa and the Indonesian/Australian region. The a posteriori emissions from sub-equatorial Africa based on TES and MOPITT data were 173 Tg CO/yr and 184 Tg CO/yr, respectively, compared to the a priori of 95 Tg CO/yr. In the Indonesian/Australian region, the a posteriori emissions inferred from TES and MOPITT data were 155 Tg CO/yr and 185 Tg CO/yr, respectively, whereas the a priori was 69 Tg CO/yr. The differences between the a posteriori emission estimates obtained from the two datasets are generally less than 20%, and are likely due to the different spatio-temporal sampling of the measurements. The a posteriori emissions significantly improve the simulated distribution of CO, however, large regional residuals remain, reflecting systematic errors in the analysis. For example, the a posteriori emissions obtained from both datasets do not completely reduce the underestimate in the model of CO column abundances over the southern tropical Atlantic, southern Africa, and over the Indian Ocean, where biases of 3?7% remain. Over eastern Asia the a posteriori emissions overestimate the CO column abundances by about 3?6%. These residuals reflect the sensitivity of the top-down source estimates to systematic errors in the analysis. Our results indicate that improving the accuracy of top-down emission estimates will require further characterization of model biases (chemical and transport) and the use of spatial-temporal inversion resolutions consistent with the information content of the observations

    Relating tropical ocean clouds to moist processes using water vapor isotope measurements

    Get PDF
    We examine the co-variations of tropospheric water vapor, its isotopic composition and cloud types and relate these distributions to tropospheric mixing and distillation models using satellite observations from the Aura Tropospheric Emission Spectrometer (TES) over the summertime tropical ocean. Interpretation of these process distributions must take into account the sensitivity of the TES isotope and water vapor measurements to variations in cloud, water, and temperature amount. Consequently, comparisons are made between cloud-types based on the International Satellite Cloud Climatology Project (ISSCP) classification; these are clear sky, non-precipitating (e.g., cumulus), boundary layer (e.g., stratocumulus), and precipitating clouds (e.g. regions of deep convection). In general, we find that the free tropospheric vapor over tropical oceans does not strictly follow a Rayleigh model in which air parcels become dry and isotopically depleted through condensation. Instead, mixing processes related to convection as well as subsidence, and re-evaporation of rainfall associated with organized deep convection all play significant roles in controlling the water vapor distribution. The relative role of these moisture processes are examined for different tropical oceanic regions
    • 

    corecore