41 research outputs found
HAP-FAST: a feasibility study incorporating qualitative, mechanistic and costing sub-studies alongside a randomised pilot trial comparing chest x-ray to low-dose CT scan and empirical antibiotics to antibiotics guided by the BIOFIRE® FILM ARRAY® pneumonia <i>plus</i> panel in adults with suspected non-ventilator-associated hospital-cquired pneumonia.
IntroductionNon-ventilator-associated hospital-acquired pneumonia (nv-HAP) is the most common healthcare-associated infection (HCAI), is associated with high mortality and morbidity and places a major burden on healthcare systems. Diagnosis currently relies on chest x-rays to confirm pneumonia and sputum cultures to determine the microbiological cause. This approach leads to over-diagnosis of pneumonia, rarely identifies a causative pathogen and perpetuates unnecessary and imprecise antibiotic use. The HAP-FAST study aims to evaluate the feasibility of a randomised trial to evaluate the clinical impact of low-dose, non-contrast-enhanced thoracic CT scans and rapid molecular sputum analysis using the BIOFIRE® FILMARRAY® pneumonia plus panel (FAPP) for patients suspected with nv-HAP.Methods and analysisThe HAP-FAST feasibility study consists of a pilot randomised trial, a qualitative study, a costing analysis and exploratory analyses of clinical samples to investigate the immune-pathophysiology of HAP. Participants are identified and recruited from four acute hospitals in the Northwest of the UK. Using a Research Without Prior Consent model, the pilot trial will recruit 220 adult participants, with or without mental capacity, and with suspected HAP. HAP-FAST is a non-blinded, sequential, multiple assignment, randomised trial with two possible stages of randomisation: first, chest x-ray (CXR) or CT; second, if treated as nv-HAP, FAPP or standard microbiological processing alone (no FAPP). Pathogen-specific antibiotic guidance will be provided for FAPP results. Randomisation uses a web-based platform and followed up for 90 days. The feasibility of a future trial will be determined by assessing trial processes, outcome measures and patient and staff experiences.Ethics and disseminationThis study has undergone combined review by the UK NHS Research Ethics Committee and Health Research Authority. Results will be disseminated via peer-reviewed journals, via the funders' website and through a range of media to engage the public.Trial registration numberNCT05483309
<i>Histoplasma</i> seropositivity and environmental risk factors for exposure in a general population in Upper River Region, The Gambia: A cross-sectional study.
Robust surveillance of Histoplasma species is warranted in endemic regions, including investigation of community-level transmission dynamics. This cross-sectional study explored anti-Histoplasma antibody seroprevalence and risk factors for exposure in a general population in Upper River Region (URR), The Gambia. Study participants were recruited (December 2022-March 2023) by random household sampling across 12 Enumeration Areas (EAs) of URR. A questionnaire and clinical examination were performed; exploring demographic, clinical and environmental risk factors for Histoplasma exposure. One venous blood sample per participant was subject to IMMY Latex Agglutination Histoplasma test to determine presence of a recent IgM response to Histoplasma. Seropositivity risk factors were explored by multi-level, multivariable logistic regression analysis. The study population (n = 298) aged 5-83 years, demonstrated a positively skewed age distribution and comprised 55.4% females. An apparent seroprevalence of 18.8% (n = 56/298, 95% CI 14.5-23.7%) was measured using the LAT. A multivariable model demonstrated increased odds of Histoplasma seropositivity amongst female participants (OR = 2.41 95% CI 1.14-5.10); and participants reporting involvement in animal manure management (OR = 4.21 95% CI 1.38-12.90), and management of domestic animals inside the compound at night during the dry season (OR = 10.72 95% CI 2.02-56.83). Increasing age (OR = 0.96 95% CI 0.93-0.98) was associated with decreased odds of seropositivity. Clustering at EA level was responsible for 17.2% of seropositivity variance. The study indicates frequent recent Histoplasma exposure and presents plausible demographic and environmental risk factors for seropositivity. Histoplasma spp. characterisation at this human-animal-environment interface is warranted, to determine public health implications of environmental reservoirs in The Gambia. The study was supported by Wellcome Trust (206,638/Z/17/Z to CES) and a University of Liverpool-funded PhD studentship (to TRC)
Co-infections, secondary infections, and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave from the ISARIC WHO CCP-UK study: a multicentre, prospective cohort study
BACKGROUND: Microbiological characterisation of co-infections and secondary infections in patients with COVID-19 is lacking, and antimicrobial use is high. We aimed to describe microbiologically confirmed co-infections and secondary infections, and antimicrobial use, in patients admitted to hospital with COVID-19. METHODS: The International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study is an ongoing, prospective cohort study recruiting inpatients from 260 hospitals in England, Scotland, and Wales, conducted by the ISARIC Coronavirus Clinical Characterisation Consortium. Patients with a confirmed or clinician-defined high likelihood of SARS-CoV-2 infection were eligible for inclusion in the ISARIC WHO CCP-UK study. For this specific study, we excluded patients with a recorded negative SARS-CoV-2 test result and those without a recorded outcome at 28 days after admission. Demographic, clinical, laboratory, therapeutic, and outcome data were collected using a prespecified case report form. Organisms considered clinically insignificant were excluded. FINDINGS: We analysed data from 48 902 patients admitted to hospital between Feb 6 and June 8, 2020. The median patient age was 74 years (IQR 59–84) and 20 786 (42·6%) of 48 765 patients were female. Microbiological investigations were recorded for 8649 (17·7%) of 48 902 patients, with clinically significant COVID-19-related respiratory or bloodstream culture results recorded for 1107 patients. 762 (70·6%) of 1080 infections were secondary, occurring more than 2 days after hospital admission. Staphylococcus aureus and Haemophilus influenzae were the most common pathogens causing respiratory co-infections (diagnosed ≤2 days after admission), with Enterobacteriaceae and S aureus most common in secondary respiratory infections. Bloodstream infections were most frequently caused by Escherichia coli and S aureus. Among patients with available data, 13 390 (37·0%) of 36 145 had received antimicrobials in the community for this illness episode before hospital admission and 39 258 (85·2%) of 46 061 patients with inpatient antimicrobial data received one or more antimicrobials at some point during their admission (highest for patients in critical care). We identified frequent use of broad-spectrum agents and use of carbapenems rather than carbapenem-sparing alternatives. INTERPRETATION: In patients admitted to hospital with COVID-19, microbiologically confirmed bacterial infections are rare, and more likely to be secondary infections. Gram-negative organisms and S aureus are the predominant pathogens. The frequency and nature of antimicrobial use are concerning, but tractable targets for stewardship interventions exist. FUNDING: National Institute for Health Research (NIHR), UK Medical Research Council, Wellcome Trust, UK Department for International Development, Bill & Melinda Gates Foundation, EU Platform for European Preparedness Against (Re-)emerging Epidemics, NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, and NIHR HPRU in Respiratory Infections at Imperial College London
Device-assessed sleep and physical activity in individuals recovering from a hospital admission for COVID-19: a multicentre study
Background:Â The number of individuals recovering from severe COVID-19 is increasing rapidly. However, little is known about physical behaviours that make up the 24-h cycle within these individuals. This study aimed to describe physical behaviours following hospital admission for COVID-19 at eight months post-discharge including associations with acute illness severity and ongoing symptoms.
Methods:Â One thousand seventy-seven patients with COVID-19 discharged from hospital between March and November 2020 were recruited. Using a 14-day wear protocol, wrist-worn accelerometers were sent to participants after a five-month follow-up assessment. Acute illness severity was assessed by the WHO clinical progression scale, and the severity of ongoing symptoms was assessed using four previously reported data-driven clinical recovery clusters. Two existing control populations of office workers and individuals with type 2 diabetes were comparators.
Results: Valid accelerometer data from 253 women and 462 men were included. Women engaged in a mean ± SD of 14.9 ± 14.7 min/day of moderate-to-vigorous physical activity (MVPA), with 12.1 ± 1.7 h/day spent inactive and 7.2 ± 1.1 h/day asleep. The values for men were 21.0 ± 22.3 and 12.6 ± 1.7 h /day and 6.9 ± 1.1 h/day, respectively. Over 60% of women and men did not have any days containing a 30-min bout of MVPA. Variability in sleep timing was approximately 2 h in men and women. More severe acute illness was associated with lower total activity and MVPA in recovery. The very severe recovery cluster was associated with fewer days/week containing continuous bouts of MVPA, longer total sleep time, and higher variability in sleep timing. Patients post-hospitalisation with COVID-19 had lower levels of physical activity, greater sleep variability, and lower sleep efficiency than a similarly aged cohort of office workers or those with type 2 diabetes.
Conclusions:Â Those recovering from a hospital admission for COVID-19 have low levels of physical activity and disrupted patterns of sleep several months after discharge. Our comparative cohorts indicate that the long-term impact of COVID-19 on physical behaviours is significant
1-year health outcomes associated with systemic corticosteroids for COVID-19:a longitudinal cohort study
BACKGROUND: In patients with coronavirus disease 2019 (COVID-19) requiring supplemental oxygen, dexamethasone reduces acute severity and improves survival, but longer-term effects are unknown. We hypothesised that systemic corticosteroid administration during acute COVID-19 would be associated with improved health-related quality of life (HRQoL) 1 year after discharge.METHODS: Adults admitted to hospital between February 2020 and March 2021 for COVID-19 and meeting current guideline recommendations for dexamethasone treatment were included using two prospective UK cohort studies (Post-hospitalisation COVID-19 and the International Severe Acute Respiratory and emerging Infection Consortium). HRQoL, assessed by the EuroQol-Five Dimensions-Five Levels utility index (EQ-5D-5L UI), pre-hospital and 1 year after discharge were compared between those receiving corticosteroids or not after propensity weighting for treatment. Secondary outcomes included patient-reported recovery, physical and mental health status, and measures of organ impairment. Sensitivity analyses were undertaken to account for survival and selection bias.FINDINGS: Of the 1888 participants included in the primary analysis, 1149 received corticosteroids. There was no between-group difference in EQ-5D-5L UI at 1 year (mean difference 0.004, 95% CI -0.026-0.034). A similar reduction in EQ-5D-5L UI was seen at 1 year between corticosteroid exposed and nonexposed groups (mean±sd change -0.12±0.22 versus -0.11±0.22). Overall, there were no differences in secondary outcome measures. After sensitivity analyses modelled using a cohort of 109 318 patients admitted to hospital with COVID-19, EQ-5D-5L UI at 1 year remained similar between the two groups.INTERPRETATION: Systemic corticosteroids for acute COVID-19 have no impact on the large reduction in HRQoL 1 year after hospital discharge. Treatments to address the persistent reduction in HRQoL are urgently needed.</p
STIMULATE-ICP-Delphi (Symptoms, Trajectory, Inequalities and Management: Understanding Long-COVID to Address and Transform Existing Integrated Care Pathways Delphi): Study protocol
Introduction As mortality rates from COVID-19 disease fall, the high prevalence of long-term sequelae (Long COVID) is becoming increasingly widespread, challenging healthcare systems globally. Traditional pathways of care for Long Term Conditions (LTCs) have tended to be managed by disease-specific specialties, an approach that has been ineffective in delivering care for patients with multi-morbidity. The multi-system nature of Long COVID and its impact on physical and psychological health demands a more effective model of holistic, integrated care. The evolution of integrated care systems (ICSs) in the UK presents an important opportunity to explore areas of mutual benefit to LTC, multi-morbidity and Long COVID care. There may be benefits in comparing and contrasting ICPs for Long COVID with ICPs for other LTCs. Methods and analysis This study aims to evaluate health services requirements for ICPs for Long COVID and their applicability to other LTCs including multi-morbidity and the overlap with medically not yet explained symptoms (MNYES). The study will follow a Delphi design and involve an expert panel of stakeholders including people with lived experience, as well as clinicians with expertise in Long COVID and other LTCs. Study processes will include expert panel and moderator panel meetings, surveys, and interviews. The Delphi process is part of the overall STIMULATE-ICP programme, aimed at improving integrated care for people with Long COVID. Ethics and dissemination Ethical approval for this Delphi study has been obtained (Research Governance Board of the University of York) as have approvals for the other STIMULATE-ICP studies. Study outcomes are likely to inform policy for ICPs across LTCs. Results will be disseminated through scientific publication, conference presentation and communications with patients and stakeholders involved in care of other LTCs and Long COVID