14 research outputs found

    A Case of Reactive Plasmacytosis Mimicking Multiple Myeloma in A Patient with Primary Sjögren's Syndrome

    Get PDF
    Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease with well-documented association of lymphoid malignancies during the progress of the disease. Although several types of malignancy and pseudomalignancy have been reported in pSS, low-grade non-Hodgkin's lymphomas are the most frequently observed. Reactive plasmacytosis mimicking myeloma is a very rare condition in association with pSS. We describe a 72-yr-old woman with pSS who presented with hypergammaglobulinemia, and extensive bone marrow and lymph node plasmacytosis, which mimicked multiple myeloma. In this patient, there was an abnormal differentiation of memory B cells to plasma cells in the peripheral blood suggesting underlying pathogenetic mechanism for this condition

    Protective Effects of Gabapentin on Allodynia and α2δ1-Subunit of Voltage-dependent Calcium Channel in Spinal Nerve-Ligated Rats

    Get PDF
    This study was designed to determine whether early gabapentin treatment has a protective analgesic effect on neuropathic pain and compared its effect to the late treatment in a rat neuropathic model, and as the potential mechanism of protective action, the α2δ1-subunit of the voltage-dependent calcium channel (α2δ1-subunit) was evaluated in both sides of the L5 dorsal root ganglia (DRG). Neuropathic pain was induced in male Sprague-Dawley rats by a surgical ligation of left L5 nerve. For the early treatment group, rats were injected with gabapentin (100 mg/kg) intraperitoneally 15 min prior to surgery and then every 24 hr during postoperative day (POD) 1-4. For the late treatment group, the same dose of gabapentin was injected every 24 hr during POD 8-12. For the control group, L5 nerve was ligated but no gabapentin was administered. In the early treatment group, the development of allodynia was delayed up to POD 10, whereas allodynia was developed on POD 2 in the control and the late treatment group (p<0.05). The α2δ1-subunit was up-regulated in all groups, however, there was no difference in the level of the α2δ1-subunit among the three groups. These results suggest that early treatment with gabapentin offers some protection against neuropathic pain but it is unlikely that this action is mediated through modulation of the α2δ1-subunit in DRG

    Assessment of indoor bioaerosols using a lab-made virtual impactor

    No full text
    <p>To assess indoor bioaerosols, a virtual impactor having 1 µm cutoff diameter was designed, fabricated, and evaluated with computational fluid dynamics simulation and also with laboratory test using polystyrene latex particles. Two other cutoff diameters of 635 nm and 1.5 µm were obtained by changing the inlet flow rate and the ratio of minor channel-to-inlet flow rates. In field test, the virtual impactor was operated with varying cutoff diameter and field-emission scanning electron microscope (FE-SEM) analysis was performed for each cutoff diameter to observe morphologies of indoor aerosol particles sampled at the major and minor outlet channels. Particles were sampled at both outlet channels using the SKC Button Aerosol sampler and subsequently cultured. By colony counting, it was found that 56% of cultured fungal particles and 63% of cultured bacterial particles had aerodynamic sizes smaller than 1 µm. MALDI-TOF analysis and visual inspection of culture samples were used to identify indoor bacterial and fungal species, respectively. Nearly same species of bacteria and fungi were detected both in the major and minor flow channels.</p> <p>© 2017 American Association for Aerosol Research</p

    Multifunctional Composite Coating as a Wear-Resistant Layer for the Bearing in Total Hip Joint Replacement

    No full text
    In this study, we developed Ti-TiN composite coatings with fine lamellar structures for use as an enhanced wear-resistant layer between the bearing components of the polymer-lined acetabular cup and the metal femoral head of total hip joint replacements (THRs). A plasma spraying deposition method was used to apply the composite coatings, and the thickness of TiN layer in the composite could be controlled by varying the flow rate of N<sub>2</sub> atmospheric gas. The surface properties, such as roughness and hardness, were analyzed, and the friction coefficient (μ) and wear rate (<i>k</i>) were measured using a bovine serum wear test. A biocompatibility test was performed to evaluate the toxicity of the composite coatings. Our experimental results reveal that the friction and wear resistance of composite coatings is superior to that of the metallic implant materials, and they have a higher level of fracture toughness as compared with other ceramic coatings because of a good balance between the hardness of the TiN and the toughness of the Ti. Furthermore, these coatings possessed excellent biocompatibility. The experimental results also demonstrate that the improved wear properties can be attributed to a certain level of unavoidable porosity that is due to the rapid solidification of liquid droplets during the plasma spraying process. The pores in the coating surface play an important role as a lubricant (bovine serum) reservoir, reducing the actual contact area and friction losses

    Genotyping-by-sequencing based single nucleotide polymorphisms enabled Kompetitive Allele Specific PCR marker development in mutant Rubus genotypes

    No full text
    Background: Rubus is an economically important fruit crop across the globe. Recently, several Rubus mutant genotypes with improved agronomic traits have been developed using gamma ray irradiation. This study investigated genetic diversity and variations in Rubus mutant genotypes using single nucleotide polymorphism (SNP) markers generated from genotyping-by-sequencing (GBS) analysis. A GBS library of 14 Rubus genotypes, consisting of seven boysenberry mutant lines, four blackberry mutant lines, and three original varieties, were sequenced on the Illumina Hiseq2000 platform. A set of SNPs were analyzed by Kompetitive Allele Specific PCR (KASP) assay in order to discriminate the Rubus genotypes. Results: A total of 50,831,040 (86.4%) reads of clean data were generated, and the trimmed length ranged from 116,380,840 to 509,806,521 bp, with an average of 228,087,333 bp per line. A total of 19,634 high-quality SNPs were detected, which contained 11,328 homozygous SNPs and 8306 heterozygous SNPs. A set of 1504 SNPs was used to perform a phylogenetic analysis, which showed that there were clear differences among the Rubus genotypes based on their origin. A total of 25 SNPs were used for the KASP assays, of which six KASP primer sets were successfully distinguished among the Rubus genotypes. Conclusions: This study demonstrated that the SNP and KASP method is an economically efficient tool for mutant screening in Rubus breeding programs.How to cite: Ryu J, Kim WJ, Im J, et al. Genotyping-by-sequencing based single nucleotide polymorphisms enabled kompetitive allele specific PCR marker development in mutant Rubus genotypes. Electron J Biotechnol 2018;35. https://doi.org/10.1016/j.ejbt.2018.08.001. Keywords: Blackberry, Boysenberry, Cultivar identification markers, Fruit crop, Gamma irradiation, Genotyping-by-sequencing, KASP methodoloy, Mutation breeding, Phylogenetic tree, Rubus, SN

    Unexpected Size Effect Observed in ZnO-Au Composite Photocatalysts

    No full text
    Semiconductor-metal nanocomposites prepared with well-defined gold nanoclusters, such as Au<sub>25</sub>, Au<sub>144</sub>, and Au<sub>807</sub>, showed size-dependent photocatalytic activities for the reduction of nile blue and azobenzene. Whereas the photoreduction of nile blue was directly related with the charge separation and transfer rate from the photoexcited ZnO to gold nanoclusters, the photoreaction of azobenzene showed unexpected size effect with a clear threshold. Mechanistic investigations revealed that the photoreduction of azobenzene proceeded via a proton-coupled electron transfer process. The photocatalytic activity of the ZnO-Au nanocomposites was also dependent on the excitation intensity, demonstrating that the multielectron/multiproton process was controlled by the charge separation and transfer in the nanocomposites

    A new corrosion-inhibiting strategy for biodegradable magnesium: reduced nicotinamide adenine dinucleotide (NADH)

    No full text
    Abstract Utilization of biodegradable metals in biomedical fields is emerging because it avoids high-risk and uneconomic secondary surgeries for removing implantable devices. Mg and its alloys are considered optimum materials for biodegradable implantable devices because of their high biocompatibility; however, their excessive and uncontrollable biodegradation is a difficult challenge to overcome. Here, we present a novel method of inhibiting Mg biodegradation by utilizing reduced nicotinamide adenine dinucleotide (NADH), an endogenous cofactor present in all living cells. Incorporating NADH significantly increases Mg corrosion resistance by promoting the formation of thick and dense protective layers. The unique mechanism by which NADH enables corrosion inhibition was discovered by combined microscopic and spectroscopic analyses. NADH is initially self-adsorbed onto the surface of Mg oxide layers, preventing Cl− ions from dissolving Mg oxides, and later recruits Ca2+ ions to form stable Ca-P protective layers. Furthermore, stability of NADH as a corrosion inhibitor of Mg under physiological conditions were confirmed using cell tests. Moreover, excellent cell adhesion and viability to Mg treated with NADH shows the feasibility of introduction of NADH to Mg-based implantable system. Our strategy using NADH suggests an interesting new way of delaying the degradation of Mg and demonstrates potential roles for biomolecules in the engineering the biodegradability of metals
    corecore