89 research outputs found

    Peripheral blood mononuclear cell gene expression and cytokine profiling in patients with intermittent claudication who exhibit exercise induced acute renal injury.

    Get PDF
    BACKGROUND: Intermittent claudication (IC) is a common manifestation of peripheral arterial disease. Some patients with IC experience a rise in Urinary N-acetyl-β-D-Glucosaminidase (NAG)/ Creatinine (Cr) ratio, a marker of renal injury, following exercise. In this study, we aim to investigate whether peripheral blood mononuclear cells (PBMC) from patients with IC who exhibit a rise in urinary NAG/ Cr ratio following exercise exhibit differential IL-10/ IL-12 ratio and gene expression compared to those who do not have a rise in NAG/ Cr ratio. METHODS: We conducted a single center observational cohort study of patients diagnosed with IC. Blood and urine samples were collected at rest and following a standardised treadmill exercise protocol. For comparative analysis patients were separated into those with any rise in NAG/Cr ratio (Group 1) and those with no rise in NAG/Cr ratio (Group 2) post exercise. Isolated PBMC from pre- and post-exercise blood samples were analysed using flow cytometry. PBMC were also cultured for 20 hours to perform further analysis of IL-10 and IL-12 cytokine levels. RNA-sequencing analysis was performed to identify differentially expressed genes between the groups. RESULTS: 20 patients were recruited (Group 1, n = 8; Group 2, n = 12). We observed a significantly higher IL-10/IL-12 ratio in cell supernatant from participants in Group 1, as compared to Group 2, on exercise at 20 hours incubation; 47.24 (IQR 9.70-65.83) vs 6.13 (4.88-12.24), p = 0.04. 328 genes were significantly differentially expressed between Group 1 and 2. The modulated genes had signatures encompassing hypoxia, metabolic adaptation to starvation, inflammatory activation, renal protection, and oxidative stress. DISCUSSION: Our results suggest that some patients with IC have an altered immune status making them 'vulnerable' to systemic inflammation and renal injury following exercise. We have identified a panel of genes which are differentially expressed in this group of patients

    A guide to chemokines and their receptors

    Get PDF
    The chemokines (or chemotactic cytokines) are a large family of small, secreted proteins that signal through cell surface G‐protein coupled heptahelical chemokine receptors. They are best known for their ability to stimulate the migration of cells, most notably white blood cells (leukocytes). Consequently, chemokines play a central role in the development and homeostasis of the immune system, and are involved in all protective or destructive immune and inflammatory responses. Classically viewed as inducers of directed chemotactic migration, it is now clear that chemokines can stimulate a variety of other types of directed and undirected migratory behaviour, such as haptotaxis, chemokinesis, and haptokinesis, in addition to inducing cell arrest or adhesion. However, chemokine receptors on leukocytes can do more than just direct migration, and these molecules can also be expressed on, and regulate the biology of, many non‐leukocytic cell types. Chemokines are profoundly affected by post‐translational modification, by interaction with the extracellular matrix (ECM), and by binding to heptahelical ‘atypical’ chemokine receptors that regulate chemokine localisation and abundance. This guide gives a broad overview of the chemokine and chemokine receptor families; summarises the complex physical interactions that occur in the chemokine network; and, using specific examples, discusses general principles of chemokine function, focussing particularly on their ability to direct leukocyte migration

    TLR7 activation at epithelial barriers promotes emergency myelopoiesis and lung antiviral immunity

    Get PDF
    Monocytes are heterogeneous innate effector leukocytes generated in the bone marrow and released into circulation in a CCR2-dependent manner. During infection or inflammation, myelopoiesis is modulated to rapidly meet the demand for more effector cells. Danger signals from peripheral tissues can influence this process. Herein we demonstrate that repetitive TLR7 stimulation via the epithelial barriers drove a potent emergency bone marrow monocyte response in mice. This process was unique to TLR7 activation and occurred independently of the canonical CCR2 and CX3CR1 axes or prototypical cytokines. The monocytes egressing the bone marrow had an immature Ly6C-high profile and differentiated into vascular Ly6C-low monocytes and tissue macrophages in multiple organs. They displayed a blunted cytokine response to further TLR7 stimulation and reduced lung viral load after RSV and influenza virus infection. These data provide insights into the emergency myelopoiesis likely to occur in response to the encounter of single-stranded RNA viruses at barrier sites

    Triglyceride-Rich Lipoproteins Modulate the Distribution and Extravasation of Ly6C/Gr1low Monocytes

    Get PDF
    Monocytes are heterogeneous effector cells involved in the maintenance and restoration of tissue integrity. However, their response to hyperlipidemia remains poorly understood. Here, we report that in the presence of elevated levels of triglyceride-rich lipoproteins, induced by administration of poloxamer 407, the blood numbers of non-classical Ly6C/Gr1(low) monocytes drop, while the number of bone marrow progenitors remains similar. We observed an increased crawling and retention of the Gr1(low) monocytes at the endothelial interface and a marked accumulation of CD68(+) macrophages in several organs. Hypertriglyceridemia was accompanied by an increased expression of tissue, and plasma CCL4 and blood Gr1(low) monocyte depletion involved a pertussis-toxin-sensitive receptor axis. Collectively, these findings demonstrate that a triglyceride-rich environment can alter blood monocyte distribution, promoting the extravasation of Gr1(low) cells. The behavior of these cells in response to dyslipidemia highlights the significant impact that high levels of triglyceride-rich lipoproteins may have on innate immune cells

    Telomere Length of Circulating Leukocyte Subpopulations and Buccal Cells in Patients with Ischemic Heart Failure and Their Offspring

    Get PDF
    BACKGROUND: We aimed to find support for the hypothesis that telomere length (TL) is causally involved in the pathogenesis of ischemic heart failure (IHF). We measured TL in IHF patients and their high-risk offspring and determined whether mean leukocyte TL reflects TL in CD34+ progenitor. We additionally measured TL of offspring of patients and controls to examine heritability throughout different cell types. METHODS AND RESULTS: TL was measured by qPCR in overall leukocytes, CD34+ progenitor cells, mononuclear cells (MNCs), and buccal cells in 27 IHF patients, 24 healthy controls and 60 offspring. TL in IHF patients was shorter than healthy controls in leukocytes (p = 0.002), but not in CD34+ cells (p = 0.39), MNCs (p = 0.31) or buccal cells (p = 0.19). Offspring of IHF patients had shorter TL in leukocytes than offspring of healthy subjects (p = 0.04) but not in other cell types. Controls and offspring showed a good within person correlation between leukocytes and CD34+ cells (r 0.562; p = 0.004 and r 0.602; p = 0.001, respectively). In IHF patients and offspring the correlation among cell types was blunted. Finally, we found strong correlations between parent and offspring TL in all four cell types. CONCLUSIONS: Reduced leukocyte TL in offspring of IHF subjects suggests a potential causal link of TL in ischemic heart disease. However, this causality is unlikely to originate from exhaustion of TL in CD34+ progenitor or MNC cells as their lengths are not well captured by overall leukocyte TL. Additionally, we found strong correlations between parent and offspring TL in all examined cell types, suggesting high heritability of TL among cell types

    Smoking status and anti-inflammatory macrophages in bronchoalveolar lavage and induced sputum in COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Macrophages have been implicated in the pathogenesis of COPD. M1 and M2 macrophages constitute subpopulations displaying pro- and anti-inflammatory properties. We hypothesized that smoking cessation affects macrophage heterogeneity in the lung of patients with COPD. Our aim was to study macrophage heterogeneity using the M2-marker CD163 and selected pro- and anti-inflammatory mediators in bronchoalveolar lavage (BAL) fluid and induced sputum from current smokers and ex-smokers with COPD.</p> <p>Methods</p> <p>114 COPD patients (72 current smokers; 42 ex-smokers, median smoking cessation 3.5 years) were studied cross-sectionally and underwent sputum induction (M/F 99/15, age 62 ± 8 [mean ± SD] years, 42 (31-55) [median (range)] packyears, post-bronchodilator FEV<sub>1 </sub>63 ± 9% predicted, no steroids past 6 months). BAL was collected from 71 patients. CD163<sup>+ </sup>macrophages were quantified in BAL and sputum cytospins. Pro- and anti-inflammatory mediators were measured in BAL and sputum supernatants.</p> <p>Results</p> <p>Ex-smokers with COPD had a higher percentage, but lower number of CD163<sup>+ </sup>macrophages in BAL than current smokers (83.5% and 68.0%, p = 0.04; 5.6 and 20.1 ×10<sup>4</sup>/ml, p = 0.001 respectively). The percentage CD163<sup>+ </sup>M2 macrophages was higher in BAL compared to sputum (74.0% and 30.3%, p < 0.001). BAL M-CSF levels were higher in smokers than ex-smokers (571 pg/ml and 150 pg/ml, p = 0.001) and correlated with the number of CD163<sup>+ </sup>BAL macrophages (Rs = 0.38, p = 0.003). No significant differences were found between smokers and ex-smokers in the levels of pro-inflammatory (IL-6 and IL-8), and anti-inflammatory (elafin, and Secretory Leukocyte Protease Inhibitor [SLPI]) mediators in BAL and sputum.</p> <p>Conclusions</p> <p>Our data suggest that smoking cessation partially changes the macrophage polarization <it>in vivo </it>in the periphery of the lung towards an anti-inflammatory phenotype, which is not accompanied by a decrease in inflammatory parameters.</p

    Humanin, a Cytoprotective Peptide, Is Expressed in Carotid Artherosclerotic Plaques in Humans

    Get PDF
    The mechanism of atherosclerotic plaque progression leading to instability, rupture, and ischemic manifestation involves oxidative stress and apoptosis. Humanin (HN) is a newly emerging endogenously expressed cytoprotective peptide. Our goal was to determine the presence and localization of HN in carotid atherosclerotic plaques.Plaque specimens from 34 patients undergoing carotid endarterectomy were classified according to symptomatic history. Immunostaining combined with digital microscopy revealed greater expression of HN in the unstable plaques of symptomatic compared to asymptomatic patients (29.42±2.05 vs. 14.14±2.13% of plaque area, p<0.0001). These data were further confirmed by immunoblot (density of HN/β-actin standard symptomatic vs. asymptomatic 1.32±0.14 vs. 0.79±0.11, p<0.01). TUNEL staining revealed a higher proportion of apoptotic nuclei in the plaques of symptomatic patients compared to asymptomatic (68.25±3.61 vs. 33.46±4.46% of nuclei, p<0.01). Double immunofluorescence labeling revealed co-localization of HN with macrophages (both M1 and M2 polarization), smooth muscle cells, fibroblasts, and dendritic cells as well as with inflammatory markers MMP2 and MMP9.The study demonstrates a higher expression of HN in unstable carotid plaques that is localized to multiple cell types within the plaque. These data support the involvement of HN in atherosclerosis, possibly as an endogenous response to the inflammatory and apoptotic processes within the atheromatous plaque

    The Caenorhabditis elegans GATA Factor ELT-1 Works through the Cell Proliferation Regulator BRO-1 and the Fusogen EFF-1 to Maintain the Seam Stem-Like Fate

    Get PDF
    Seam cells in Caenorhabditis elegans provide a paradigm for the stem cell mode of division, with the ability to both self-renew and produce daughters that differentiate. The transcription factor RNT-1 and its DNA binding partner BRO-1 (homologues of the mammalian cancer-associated stem cell regulators RUNX and CBFβ, respectively) are known rate-limiting regulators of seam cell proliferation. Here, we show, using a combination of comparative genomics and DNA binding assays, that bro-1 expression is directly regulated by the GATA factor ELT-1. elt-1(RNAi) animals display similar seam cell lineage defects to bro-1 mutants, but have an additional phenotype in which seam cells lose their stem cell-like properties and differentiate inappropriately by fusing with the hyp7 epidermal syncytium. This phenotype is dependent on the fusogen EFF-1, which we show is repressed by ELT-1 in seam cells. Overall, our data suggest that ELT-1 has dual roles in the stem-like seam cells, acting both to promote proliferation and prevent differentiation

    HMOX1 Gene Promoter Alleles and High HO-1 Levels Are Associated with Severe Malaria in Gambian Children

    Get PDF
    Heme oxygenase 1 (HO-1) is an essential enzyme induced by heme and multiple stimuli associated with critical illness. In humans, polymorphisms in the HMOX1 gene promoter may influence the magnitude of HO-1 expression. In many diseases including murine malaria, HO-1 induction produces protective anti-inflammatory effects, but observations from patients suggest these may be limited to a narrow range of HO-1 induction, prompting us to investigate the role of HO-1 in malaria infection. In 307 Gambian children with either severe or uncomplicated P. falciparum malaria, we characterized the associations of HMOX1 promoter polymorphisms, HMOX1 mRNA inducibility, HO-1 protein levels in leucocytes (flow cytometry), and plasma (ELISA) with disease severity. The (GT)n repeat polymorphism in the HMOX1 promoter was associated with HMOX1 mRNA expression in white blood cells in vitro, and with severe disease and death, while high HO-1 levels were associated with severe disease. Neutrophils were the main HO-1-expressing cells in peripheral blood, and HMOX1 mRNA expression was upregulated by heme-moieties of lysed erythrocytes. We provide mechanistic evidence that induction of HMOX1 expression in neutrophils potentiates the respiratory burst, and propose this may be part of the causal pathway explaining the association between short (GT)n repeats and increased disease severity in malaria and other critical illnesses. Our findings suggest a genetic predisposition to higher levels of HO-1 is associated with severe illness, and enhances the neutrophil burst leading to oxidative damage of endothelial cells. These add important information to the discussion about possible therapeutic manipulation of HO-1 in critically ill patients
    corecore