1,736 research outputs found
Test status and experience with the 7.5 megawatt Mod-2 wind turbine cluster
The Mod-2 wind turbine cluster is described. The site preparation and construction activities are discussed, and preliminary test results, status, and plans are presented
A Study of a Mini-drift GEM Tracking Detector
A GEM tracking detector with an extended drift region has been studied as
part of an effort to develop new tracking detectors for future experiments at
RHIC and for the Electron Ion Collider that is being planned for BNL or JLAB.
The detector consists of a triple GEM stack with a small drift region that was
operated in a mini TPC type configuration. Both the position and arrival time
of the charge deposited in the drift region were measured on the readout plane
which allowed the reconstruction of a short vector for the track traversing the
chamber. The resulting position and angle information from the vector could
then be used to improve the position resolution of the detector for larger
angle tracks, which deteriorates rapidly with increasing angle for conventional
GEM tracking detectors using only charge centroid information. Two types of
readout planes were studied. One was a COMPASS style readout plane with 400
micron pitch XY strips and the other consisted of 2x10mm2 chevron pads. The
detector was studied in test beams at Fermilab and CERN, along with additional
measurements in the lab, in order to determine its position and angular
resolution for incident track angles up to 45 degrees. Several algorithms were
studied for reconstructing the vector using the position and timing information
in order to optimize the position and angular resolution of the detector for
the different readout planes. Applications for large angle tracking detectors
at RHIC and EIC are also discussed.Comment: Submitted to the IEEE Transactions on Nuclear Scienc
Exposure damage mechanisms for KCl windows in high power laser systems
An experimental study of the 10.6 micrometer and 0.6328 micrometer optical properties of single crystal and europium doped polycrystal is described. Significant variations in the optical properties are observed over periods of exposure up to 100 hours. Models are proposed to predict the 10.6 micrometer absorptivity for long exposure periods. Mechanical creep has been detected in both materials at high temperature
Construction and Expected Performance of the Hadron Blind Detector for the PHENIX Experiment at RHIC
A new Hadron Blind Detector (HBD) for electron identification in high density
hadron environment has been installed in the PHENIX detector at RHIC in the
fall of 2006. The HBD will identify low momentum electron-positron pairs to
reduce the combinatorial background in the mass spectrum, mainly
in the low-mass region below 1 GeV/c. The HBD is a windowless
proximity-focusing Cherenkov detector with a radiator length of 50 cm, a CsI
photocathode and three layers of Gas Electron Multipliers (GEM). The HBD uses
pure CF as a radiator and a detector gas. Construction details and the
expected performance of the detector are described.Comment: QM2006 proceedings, 4 pages 3 figure
A study of the optical and radiation damage properties of lead tungstate crystals
A study has been made of the optical and radiation damage properties of undoped and niobium doped lead tungstate crystals. Data were obtained on the optical absorbance, the intensity and decay time of the scintillation light output, and the radioluminescence and photoluminescence emission spectra. Radiation damage was studied in several undoped and niobium doped samples using ^(60)Co gamma ray irradiation. The change in optical absorption and observed scintillation light output was measured as a function of dose up to total cumulative doses on the order of 800 krad. The radiation induced phosphorescence and thermoluminescence was also measured, as well as recovery from damage by optical bleaching and thermal annealing. An investigation was also made to determine trace element impurities in several samples
A Hadron Blind Detector for the PHENIX Experiment
A novel Hadron Blind Detector (HBD) has been developed for an upgrade of the
PHENIX experiment at RHIC. The HBD will allow a precise measurement of
electron-positron pairs from the decay of the light vector mesons and the
low-mass pair continuum in heavy-ion collisions. The detector consists of a 50
cm long radiator filled with pure CF4 and directly coupled in a windowless
configuration to a triple Gas Electron Multiplier (GEM) detector with a CsI
photocathode evaporated on the top face of the first GEM foil.Comment: 4 pages, 3 figures, Quark Matter 2005 conference proceeding
Application of a Self-Similar Pressure Profile to Sunyaev-Zel'dovich Effect Data from Galaxy Clusters
We investigate the utility of a new, self-similar pressure profile for
fitting Sunyaev-Zel'dovich (SZ) effect observations of galaxy clusters. Current
SZ imaging instruments - such as the Sunyaev-Zel'dovich Array (SZA) - are
capable of probing clusters over a large range in physical scale. A model is
therefore required that can accurately describe a cluster's pressure profile
over a broad range of radii, from the core of the cluster out to a significant
fraction of the virial radius. In the analysis presented here, we fit a radial
pressure profile derived from simulations and detailed X-ray analysis of
relaxed clusters to SZA observations of three clusters with exceptionally high
quality X-ray data: A1835, A1914, and CL J1226.9+3332. From the joint analysis
of the SZ and X-ray data, we derive physical properties such as gas mass, total
mass, gas fraction and the intrinsic, integrated Compton y-parameter. We find
that parameters derived from the joint fit to the SZ and X-ray data agree well
with a detailed, independent X-ray-only analysis of the same clusters. In
particular, we find that, when combined with X-ray imaging data, this new
pressure profile yields an independent electron radial temperature profile that
is in good agreement with spectroscopic X-ray measurements.Comment: 28 pages, 6 figures, accepted by ApJ for publication (probably April
2009
- …