5,386 research outputs found

    Mechanistic Links Between the Sedimentary Redox Cycle and Marine Acid-Base Chemistry

    Get PDF
    The redox state of Earth's surface is controlled on geological timescales by the flow of electrons through the sedimentary rock cycle, mediated largely by the weathering and burial of C‐S‐Fe phases. These processes buffer atmospheric pO₂. At the same time, CO₂ influxes and carbonate burial control seawater acid‐base chemistry and climate over long timescales via the carbonate‐silicate cycle. However, these two systems are mechanistically linked and impact each other via charge balance in the hydrosphere. Here, we use a low‐order Earth system model to interrogate a subset of these connections, with a focus on changes that occur during perturbations to electron flow through the sedimentary rock cycle. We show that the net oxidation or reduction of the Earth's surface can play an important role in controlling acid‐base processes in the oceans and thus climate, and suggest that these links should be more fully integrated into interpretive frameworks aimed at understanding Earth system evolution throughout Precambrian and Phanerozoic time

    Preservation of Oil Palm Fruits: Nonoxidative Effects of Ionizing Radiation on Palm Olein and Crude Palm Oil

    Get PDF
    The effect of gamma-irradiation on palm oil has been investigated. Irradiation doses (0.1 to 1 MGj') caused severe destruction of unsaturated but had little effect on saturated fatty acids. Similar effects were obsemed in irradiated samples stored for 1 and 2 months at room temperature. Radiation (uP to 30 kGy) also caused severe destruction of carotenes in crude palm oil, but had no significant effect on the free fatty acid content. These findings indicate that gamma-radiation may be used for preservation but not for sterilization of palm fruits

    Application of Conjugable Oxidation Products Assay in Assessment of Gamma-Irradiated Palm Olein

    Get PDF
    Samples ojpalm olein were irradiated with y-rays up to 12kGy. The extent ojperoxidation in irradiated samples was determined by conjugable oxidation products (COP) assay and the result were compared with the UV absorbance at 232 nm. The two parameters were poorly correlated (r = 0.6321) within the range ofdoses used. The ifJect ofy-irradiation is mainly to oxidise linoleic acid (C18:2) as this component is the major diunsaturatedJatty acid in palm oil

    Mechanistic Links Between the Sedimentary Redox Cycle and Marine Acid-Base Chemistry

    Get PDF
    The redox state of Earth's surface is controlled on geological timescales by the flow of electrons through the sedimentary rock cycle, mediated largely by the weathering and burial of C‐S‐Fe phases. These processes buffer atmospheric pO₂. At the same time, CO₂ influxes and carbonate burial control seawater acid‐base chemistry and climate over long timescales via the carbonate‐silicate cycle. However, these two systems are mechanistically linked and impact each other via charge balance in the hydrosphere. Here, we use a low‐order Earth system model to interrogate a subset of these connections, with a focus on changes that occur during perturbations to electron flow through the sedimentary rock cycle. We show that the net oxidation or reduction of the Earth's surface can play an important role in controlling acid‐base processes in the oceans and thus climate, and suggest that these links should be more fully integrated into interpretive frameworks aimed at understanding Earth system evolution throughout Precambrian and Phanerozoic time

    Testing of the LSST's photometric calibration strategy at the CTIO 0.9 meter telescope

    Get PDF
    The calibration hardware system of the Large Synoptic Survey Telescope (LSST) is designed to measure two quantities: a telescope's instrumental response and atmospheric transmission, both as a function of wavelength. First of all, a "collimated beam projector" is designed to measure the instrumental response function by projecting monochromatic light through a mask and a collimating optic onto the telescope. During the measurement, the light level is monitored with a NIST-traceable photodiode. This method does not suffer from stray light effects or the reflections (known as ghosting) present when using a flat-field screen illumination, which has a systematic source of uncertainty from uncontrolled reflections. It allows for an independent measurement of the throughput of the telescope's optical train as well as each filter's transmission as a function of position on the primary mirror. Second, CALSPEC stars can be used as calibrated light sources to illuminate the atmosphere and measure its transmission. To measure the atmosphere's transfer function, we use the telescope's imager with a Ronchi grating in place of a filter to configure it as a low resolution slitless spectrograph. In this paper, we describe this calibration strategy, focusing on results from a prototype system at the Cerro Tololo Inter-American Observatory (CTIO) 0.9 meter telescope. We compare the instrumental throughput measurements to nominal values measured using a laboratory spectrophotometer, and we describe measurements of the atmosphere made via CALSPEC standard stars during the same run

    The NASA Ames Research Center one- and two-dimensional stratospheric models. Part 2: The two-dimensional model

    Get PDF
    The two-dimensional model of stratospheric constituents is presented in detail. The derivation of pertinent transport parameters and the numerical solution of the species continuity equations, including a technique for treating the stiff differential equations that represent the chemical kinetic terms, and appropriate methods for simulating the diurnal variations of the solar zenith angle and species concentrations are discussed. Predicted distributions of tracer constituents (ozone, carbon 14, nitric acid) are compared with observed distributions

    Effects of Training Intensity on Locomotor Performance in Individuals With Chronic Spinal Cord Injury: A Randomized Crossover Study

    Get PDF
    Background. Many physical interventions can improve locomotor function in individuals with motor incomplete spinal cord injury (iSCI), although the training parameters that maximize recovery are not clear. Previous studies in individuals with other neurologic injuries suggest the intensity of locomotor training (LT) may positively influence walking outcomes. However, the effects of intensity during training of individuals with iSCI have not been tested. Objective. The purpose of this pilot, blinded-assessor randomized trial was to evaluate the effects of LT intensity on walking outcomes in individuals with iSCI. Methods. Using a crossover design, ambulatory participants with iSCI \u3e1 year duration performed either high- or low-intensity LT for ≤20 sessions over 4 to 6 weeks. Four weeks following completion, the training interventions were alternated. Targeted intensities focused on achieving specific ranges of heart rate (HR) or ratings of perceived exertion (RPE), with intensity manipulated by increasing speeds or applying loads. Results. Significantly greater increases in peak treadmill speeds (0.18 vs 0.02 m/s) and secondary measures of metabolic function and overground speed were observed following high- versus low-intensity training, with no effects of intervention order. Moderate to high correlations were observed between differences in walking speed or distances and differences in HRs or RPEs during high- versus low-intensity training. Conclusion. This pilot study provides the first evidence that the intensity of stepping practice may be an important determinant of LT outcomes in individuals with iSCI. Whether such training is feasible in larger patient populations and contributes to improved locomotor outcomes deserves further consideration

    Texture-specific Si isotope variations in Barberton Greenstone Belt cherts record low temperature fractionations in early Archean seawater

    Get PDF
    Sedimentary cherts are unusually abundant in early Archean (pre-3.0 Ga) sequences, suggesting a silica cycle that was profoundly different than the modern system. Previously applied for the purpose of paleothermometry, Si isotopes in ancient cherts can offer broader insight into mass fluxes and mechanisms associated with silica concentration, precipitation, diagenesis, and metamorphism. Early Archean cherts contain a rich suite of sedimentological and petrographic textures that document a history of silica deposition, cementation, silicification, and recrystallization. To add a new layer of insight into the chemistry of early cherts, we have used wavelength-dispersive spectroscopy and then secondary ion mass spectrometry (SIMS) to produce elemental and Si and O isotope ratio data from banded black-and-white cherts from the Onverwacht Group of the Barberton Greenstone Belt, South Africa. This geochemical data is then interpreted in the framework of depositional and diagenetic timing of silica precipitation provided by geological observations. SIMS allows the comparison of Si and O isotope ratios of distinct silica phases, including black carbonaceous chert beds and bands (many including well-defined sedimentary grains), white relatively pure chert bands including primary silica granules, early cavity-filling cements, and later quartz-filled veins. Including all chert types and textures analyzed, the δ^(30)Si dataset spans a range from −4.78‰ to +3.74‰, with overall mean 0.20‰, median 0.51‰, and standard deviation 1.30‰ (n = 1087). Most samples have broadly similar δ^(30)Si distributions, but systematic texture-specific δ^(30)Si differences are observed between white chert bands (mean +0.60‰, n = 750), which contain textures that represent primary and earliest diagenetic silica phases, and later cavity-filling cements (mean −1.41‰, n = 198). We observed variations at a ∼100 μm scale indicating a lack of Si isotope homogenization at this scale during diagenesis and metamorphism, although fractionations during diagenetic phase transformations may have affected certain textures. We interpret these systematic variations to reflect fractionation during silica precipitation as well as isotopically distinct fluids from which later phases originated. SIMS δ^(18)O values fall in a range from 16.39‰ to 23.39‰ (n = 381), similar to previously published data from bulk gas source mass spectrometry of Onverwacht cherts. We observed only limited examples of texture-related variation in δ^(18)O and did not observe correlation of δ^(18)O with δ^(30)Si trends. This is consistent with hypotheses that Si isotope ratios are more resistant to alteration under conditions of rock-buffered diagenesis (Marin-Carbonne et al., 2011). Our results indicate that low temperature processes fractionated silicon isotopes in early Archean marine basins, a behavior that probably precludes the application of chert δ^(30)Si as a robust paleothermometer. The values we observe for facies that sedimentological and petrographic observations indicate formed as primary and earliest diagenetic silica precipitates from seawater are more ^(30)Si-rich than that expected for bulk silicate Earth. This is consistent with the hypothesis that the silicon isotope budget is balanced by the coeval deposition of ^(30)Si-enriched cherts and ^(30)Si-depleted iron formation lithologies. Precipitation of authigenic clay minerals in both terrestrial and marine settings may have also comprised a large ^(30)Si-depleted sink, with the corollary of an important non-carbonate alkalinity sink consuming cations released by silicate weathering
    corecore