165 research outputs found

    AMT-18 Cruise Report

    Get PDF
    This was the eighteenth in the series of Atlantic Meridional Transect (AMT) cruises, and was carried out on board the British Antarctic Survey research vessel the RRS James Clark Ross. The cruise sailed from Immingham in the United Kingdom on 4th October 2008, and ended in Port Stanley, The Falkland Islands, on November 10th, 2008. This is the first of a new series of AMT cruises funded through Theme 10b of the NERC OCEANS 2025 science programme, which is a scientific collaboration between Plymouth Marine Laboratory (PML) and the National Oceanography Centre, Southampton (NOC,S). This is now the third phase of the AMT with the first 11 cruises between 1995 and 2000, funded by PML, NERC and NASA. Phase 2 was between 2002 and 2005 and was funded by a NERC consortium grant with many institutions from around the UK contributing to the scientific aims, and this was led by Carol Robinson at PML. The AMT-18 Participants were an International team gathered from PML, NOC, University of Warwick, Bigelow Laboratory of Ocean Sciences, USA, University of Newcastle, The Natural History Museum London, The British Antarctic Survey, and the Universidad de la Republica, Montevideo, Uruguay

    RRS Discovery DY021 Cruise Report, March 2015

    Get PDF
    The Shelf Sea Biogeochemistry research programme directly relates to the delivery of the NERC Earth system science theme and aims to provide evidence that supports a number of marine policy areas and statutory requirements, such as the Marine Strategy Framework Directive and Marine and Climate Acts. The shelf seas are highly productive compared to the open ocean, a productivity that underpins more than 90 per cent of global fisheries. Their importance to society extends beyond food production to include issues of biodiversity, carbon cycling and storage, waste disposal, nutrient cycling, recreation and renewable energy resources. The shelf seas have been estimated to be the most valuable biome on Earth, but they are under considerable stress, as a result of anthropogenic nutrient loading, overfishing, habitat disturbance, climate change and other impacts. However, even within the relatively well-studied European shelf seas, fundamental biogeochemical processes are poorly understood. For example: the role of shelf seas in carbon storage; in the global cycles of key nutrients (nitrogen, phosphorus, silicon and iron); and in determining primary and secondary production, and thereby underpinning the future delivery of many other ecosystem services. Improved knowledge of such factors is not only required by marine policymakers; it also has the potential to increase the quality and cost-effectiveness of management decisions at the local, national and international levels under conditions of climate change. The Shelf Sea Biogeochemistry research programme will take a holistic approach to the cycling of nutrients and carbon and the controls on primary and secondary production in UK and European shelf seas, to increase understanding of these processes and their role in wider biogeochemical cycles. It will thereby significantly improve predictive marine biogeochemical and ecosystem models over a range of scales. The scope of the programme includes exchanges with the open ocean (transport on and off the shelf to a depth of around 500m), together with cycling, storage and release processes on the shelf slope, and air-sea exchange of greenhouse gases (carbon dioxide and nitrous oxide). The DY021 cruise is the first of the 2015 Benthic SSB cruises to investigate the 4 main ‘representative’ sites in the Celtic Sea that will represent all the various sediment types found in the whole area, these being Mud, San, Sandy-Mud and Muddy-Sand. The cruise will also carry out complimentary sampling at the Pelagic SSB programme main site called CANDYFLOSS in the central Shelf area in order to better link the Benthic and Pelagic programmes

    Seasonality in the cross-shelf physical structure of a temperate shelf sea and the implications for nitrate supply

    Get PDF
    We address a long-standing problem of how nutrients are transported from the shelf edge and from rivers to support regular, seasonal primary production in the interior of a wide, temperate, shelf sea. Cross-shelf sections of hydrography and nutrients, from a series of cruises between March 2014 and August 2015, along with time series of river discharge and river nutrient load are used to assess the seasonality of cross-shelf transports. Riverine nitrogen inputs are estimated to account for 30% of the nitrate available for the spring bloom on the inner shelf, and 10% in the mid- to outer-shelf. In the bottom layer in summer, high salinity, nutrient-rich waters are transported on-shelf as a result of wind-driven Ekman transport, cross-shelf pressure gradients and/or internal tidal wave Stoke’s drift. In the centre of the shelf this advection is responsible for 25% of the increase in bottom water nitrate seen between April and November 2014. The remaining nitrate increase suggests that about 50–62% of the nitrogen fixed into organic material during spring, summer and autumn phytoplankton growth is recycled in the bottom water over the 12 months between March 2014 and March 2015. In winter, when the water column is vertically mixed, there is a weak net off-shelf transport of about 1 m2 s−1, possibly driven by a reversal of the horizontal density gradient caused by excess cooling of shallower shelf waters. Overall, shelf nitrate concentrations are maintained by a combination of riverine supply, recycling of organic material, and summer on-shelf transports. We suggest that the main driver of inter-annual variability in pre-spring nitrate concentrations is variability in the depth of the winter mixed layer over the shelf slope

    Phosphorus dynamics in the Barents Sea

    Get PDF
    The Barents Sea is considered a warming hotspot in the Arctic; elevated sea surface temperatures have been accompanied with increased inflow of Atlantic water onto the shelf sea. Such hydrodynamic changes and a concomitant reduction of sea ice coverage enables a prolonged phytoplankton growing season, which will inevitably affect nutrient stoichiometry and the controls on primary production. During the summer of 2018, we investigated the role of phosphorus in mediating primary production in the Barents Sea. Dissolved inorganic phosphorus (DIP), its most bioavailable form, had an average net turnover time of 9.4�4.8 d. The most southern Atlantic influenced station accounted for both the highest rates of primary production (655 mg C m2 d−1) and shortest net DIP turnover (2.8�0.5 d). The fraction of assimilated DIP released as dissolved organic phosphorus (DOP) at this station was < 4% compared to an average of 21% at all other stations. We observed significant differences between phytoplankton communities in Arctic and Atlantic waters within the Barents Sea. Slower DIP turnover and greater release of DOP was associated with Phaeocystis pouchetii dominated communities in Arctic waters. Faster turnover rates and greater phosphorus retention occurred among the Atlantic phytoplankton communities dominated by Emiliania huxleyi. Thesefindings provide baseline measurements of P utilization in the Barents Sea, and suggest increased Atlantic intrusion of this region could be accompanied by more rapid DIP turnover, possibly leading to future P limitation (rather than N limitation) on primary productio

    Seasonal organic matter dynamics in a temperate shelf sea

    Get PDF
    Organic matter (OM) plays an important role in productive shelf seas and their contribution to global carbon (C) and nutrient cycles. We investigated dissolved and particulate OM (DOM and POM, respectively) dynamics over a seasonal cycle in the Celtic Sea. The quantity of OC was largest during the spring bloom and lowest in autumn. DOM was always C rich relative to the POM pool and the Redfield ratio (106C:16N:P). There was clear decoupling between C, N and P and the response of OM composition to different seasons and nutrient statuses of the microbial community. The C:P stoichiometry was much more variable than the C:N stoichiometry, which was near constant. Downward OC fluxes were dominated by POM during bloom events and DOM during the stratified summer. In terms of partitioning, 92–96% of OC was in the DOM pool throughout sampling, which given its high C:N (12.4–17) suggests it was an efficient vehicle for potential off-shelf export of C during winter mixing

    Terrestrial dissolved organic matter distribution in the North Sea

    Get PDF
    The flow of terrestrial carbon to rivers and inland waters is a major term in the global carbon cycle. The organic fraction of this flux may be buried, remineralized or ultimately stored in the deep ocean. The latter can only occur if terrestrial organic carbon can pass through the coastal and estuarine filter, a process of unknown efficiency. Here, data are presented on the spatial distribution of terrestrial fluorescent and chromophoric dissolved organic matter (FDOM and CDOM, respectively) throughout the North Sea, which receives organic matter from multiple distinct sources. We use FDOM and CDOM as proxies for terrestrial dissolved organic matter (tDOM) to test the hypothesis that tDOM is quantitatively transferred through the North Sea to the open North Atlantic Ocean. Excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC) revealed a single terrestrial humic-like class of compounds whose distribution was restricted to the coastal margins and, via an inverse salinity relationship, to major riverine inputs. Two distinct sources of fluorescent humic-like material were observed associated with the combined outflows of the Rhine, Weser and Elbe rivers in the south-eastern North Sea and the Baltic Sea outflow to the eastern central North Sea. The flux of tDOM from the North Sea to the Atlantic Ocean appears insignificant, although tDOM export may occur through Norwegian coastal waters unsampled in our study. Our analysis suggests that the bulk of tDOM exported from the Northwest European and Scandinavian landmasses is buried or remineralized internally, with potential losses to the atmosphere. This interpretation implies that the residence time in estuarine and coastal systems exerts an important control over the fate of tDOM and needs to be considered when evaluating the role of terrestrial carbon losses in the global carbon cycle

    Barium isotopes reveal role of ocean circulation on barium cycling in the Atlantic

    Get PDF
    We diagnose the relative influences of local-scale biogeochemical cycling and regional-scale ocean circulation on Atlantic barium cycling by analysing four new depth profiles of dissolved Ba concentrations and isotope compositions from the South and tropical North Atlantic. These new profiles exhibit systematic vertical, zonal and meridional variations that reflect the influence of both local-scale barite cycling and large-scale ocean circulation. Epipelagic decoupling of dissolved Ba and Si reported previously in the tropics is also found to be associated with significant Ba isotope heterogeneity. As such, we contend that this decoupling originates from the depth segregation of opal and barite formation but is exacerbated by weak vertical mixing. Zonal influence from isotopically-‘heavy’ water masses in the western North Atlantic evidence the advective inflow of Ba-depleted Upper Labrador Sea Water, which is not seen in the eastern basin or the South Atlantic. Meridional variations in Atlantic Ba isotope systematics below 2000 m appear entirely controlled by conservative mixing. Using an inverse isotopic mixing model, we calculate the Ba isotope composition of the Ba-poor northern end-member as +0.45 ‰ and the Ba-rich southern end-member +0.26 ‰, relative to NIST SRM 3104a. The near-conservative behaviour of Ba below 2000 m indicates that Ba isotopes can serve as an independent tracer of the provenance of northern- versus southern-sourced water masses in the deep Atlantic Ocean. This finding may prove useful in palaeoceanographic studies, should appropriate sedimentary archives be identified, and offers new insights into the processes that cycle Ba in seawater

    Seasonal and spatial variability in the optical characteristics of DOM in a temperate shelf sea

    Get PDF
    The Celtic Sea is a productive temperate sea located on the Northwest European Shelf. It is an important pathway for the delivery of land-derived material to the North Atlantic Ocean, including dissolved organic matter (DOM). The aim of this study was to determine the seasonal and spatial variability in the magnitude, source and composition of DOM at three sites representing on shelf, central shelf and shelf edge regions in the Celtic Sea, using observations collected during the UK Shelf Sea Biogeochemistry (SSB) research programme (November 2014 – August 2015). The concentration of dissolved organic carbon (DOC) alongside DOM absorbance and fluorescence indices were measured and fluorescence Excitation and Emission Matrices (EEMs) combined with Parallel Factor Analysis (PARAFAC) were used to assess DOM composition and lability. The PARAFAC model identified four unique fluorescent components for autumn (November 2014), winter (March 2015), spring (April 2015) and summer (July 2015) consisting of two humic-like components attributed to terrestrial (C1) and marine sources (C2), and two protein components identified as tyrosine-like (C3) and tryptophan-like (C4) attributed to in situ production. DOC varied seasonally and there were strong cross shelf trends. The protein components (C3 and C4) exhibited large seasonal and within season variability particularly during productive periods. In contrast, there were persistent cross shelf gradients in the CDOM absorption coefficient at 305 nm (a305), the UV specific absorbance at 280 nm (SUVA280), the humification index (HIX), and the humic-like fluorescent components (C1 and C2), which were higher in the on shelf region and decreased towards the shelf edge. The humic-like components and the slope ratio (SR) were significantly correlated with salinity throughout all seasons, indicating a strong influence of terrestrially-derived organic matter in the Celtic Sea, with potentially up to 35% of DOC in the central shelf during winter originating from terrestrial inputs. Results from this study illustrate the importance of monitoring DOM quantitatively and qualitatively for a better understanding of the supply, production, cycling and export of this dynamic organic carbon pool in shelf seas
    corecore