47 research outputs found

    The impact of obstructive sleep apnea variability measured in-lab versus in-home on sample size calculations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When conducting a treatment intervention, it is assumed that variability associated with measurement of the disease can be controlled sufficiently to reasonably assess the outcome. In this study we investigate the variability of Apnea-Hypopnea Index obtained by polysomnography and by in-home portable recording in untreated mild to moderate obstructive sleep apnea (OSA) patients at a four- to six-month interval.</p> <p>Methods</p> <p>Thirty-seven adult patients serving as placebo controls underwent a baseline polysomnography and in-home sleep study followed by a second set of studies under the same conditions. The polysomnography studies were acquired and scored at three independent American Academy of Sleep Medicine accredited sleep laboratories. The in-home studies were acquired by the patient and scored using validated auto-scoring algorithms. The initial in-home study was conducted on average two months prior to the first polysomnography, the follow-up polysomnography and in-home studies were conducted approximately five to six months after the initial polysomnography.</p> <p>Results</p> <p>When comparing the test-retest Apnea-hypopnea Index (AHI) and apnea index (AI), the in-home results were more highly correlated (r = 0.65 and 0.68) than the comparable PSG results (r = 0.56 and 0.58). The in-home results provided approximately 50% less test-retest variability than the comparable polysomnography AHI and AI values. Both the overall polysomnography AHI and AI showed a substantial bias toward increased severity upon retest (8 and 6 events/hr respectively) while the in-home bias was essentially zero. The in-home percentage of time supine showed a better correlation compared to polysomnography (r = 0.72 vs. 0.43). Patients biased toward more time supine during the initial polysomnography; no trends in time supine for in-home studies were noted.</p> <p>Conclusion</p> <p>Night-to-night variability in sleep-disordered breathing can be a confounding factor in assessing treatment outcomes. The sample size of this study was small given the night-to-night variability in OSA and limited understanding of polysomnography reliability. We found that in-home studies provided a repeated measure of sleep disordered breathing less variable then polysomnography. Investigators using polysomnography to assess treatment outcomes should factor in the increased variability and bias toward increased AHI values upon retest to ensure the study is adequately powered.</p

    Development and Growth of a Large Multispecialty Certification Examination: Sleep Medicine Certification—Results of the First Three Examinations

    Get PDF
    This paper summarizes the results of the first three examinations (2007, 2009, and 2011) of the Sleep Medicine Certification Examination, administered by its six sponsoring American Board of Medical Specialty Boards. There were 2,913 candidates who took the 2011 examination through one of three pathways—self-attested practice experience, previous certification by the American Board of Sleep Medicine, or formal Sleep Medicine fellowship training. The 2011 exam was the last administration in which candidates who had not previously been admitted could take it without completion of formal Sleep Medicine fellowship training. As expected, the number of candidates admitted to the 2011 examination through the practice experience pathway increased, and the overall scores of these candidates were on average lower than the other candidates. Consequently, the pass rate for all first takers of the 2011 examination (65%) was lower than that observed from the 2009 examination (78%) and the 2007 examination (73%). For each administration, candidates admitted through the fellowship training pathway scored the highest; over 90% of them passed the 2011 and 2009 examinations

    Airflow limitation in a collapsible model of the human pharynx: physical mechanisms studied with fluid‐structure interaction simulations and experiments

    No full text
    Abstract The classical Starling Resistor model has been the paradigm of airway collapse in obstructive sleep apnea (OSA) for the last 30 years. Its theoretical framework is grounded on the wave‐speed flow limitation (WSFL) theory. Recent observations of negative effort dependence in OSA patients violate the predictions of the WSFL theory. Fluid‐structure interaction (FSI) simulations are emerging as a technique to quantify how the biomechanical properties of the upper airway determine the shape of the pressure‐flow curve. This study aimed to test two predictions of the WSFL theory, namely (1) the pressure profile upstream from the choke point becomes independent of downstream pressure during flow limitation and (2) the maximum flowrate in a collapsible tube is VImax=A3/2(ρdA/dP)−1/2, where ρ is air density and A and P are the cross‐sectional area and pressure at the choke point respectively. FSI simulations were performed in a model of the human upper airway with a collapsible pharynx whose wall thickness varied from 2 to 8 mm and modulus of elasticity ranged from 2 to 30 kPa. Experimental measurements in an airway replica with a silicone pharynx validated the numerical methods. Good agreement was found between our FSI simulations and the WSFL theory. Other key findings include: (1) the pressure‐flow curve is independent of breathing effort (downstream pressure vs. time profile); (2) the shape of the pressure‐flow curve reflects the airway biomechanical properties, so that VImax is a surrogate measure of pharyngeal compliance
    corecore