250 research outputs found

    Canola seed as affected by swathing time

    Get PDF
    Non-Peer ReviewedYield, weight, protein content (oil-free meal) and oil content of canola seed increased as seeds developed. Maximum values were obtained between 45-49 days after flowering, when seed moisture was 29-38%. Fatty acid composition of canola seed oil changed during seed development. The proportion of oleic (C18:1) and linolenic (C18:3) acids increased, while that of most other fatty acids decreased, as seeds developed, while Eicosenoic (C20:1) and erucic (C22:1) acids did not show a clear trend. Fatty-acids tended to stabilize by the 49th day after flowering. Early seeding resulted in higher seed yield, larger seeds, lower seed protein content and higher seed oil content, when compared to late seeding

    Midinfrared third-harmonic generation from macroscopically aligned ultralong single-wall carbon nanotubes

    Get PDF
    We report the observation of strong third-harmonic generation from a macroscopic array of aligned ultralong single-wall carbon nanotubes (SWCNTs)with intensemidinfrared radiation. Through power-dependent experiments, we determined the absolute value of the third-order nonlinear optical susceptibility !(3) of our SWCNT film to be 5.53 × 10−12 esu, three orders of magnitude larger than that of the fused silica reference we used. Taking account of the filling factor of 8.75% for our SWCNT film, we estimate a !(3) of 6.32 × 10−11 esu for a fully dense film. Furthermore, through polarization-dependent experiments, we extracted all the nonzero elements of the !(3) tensor, determining the magnitude of the weaker tensor elements to be #1/6 of that of the dominant !(3) zzzz component

    The Anatomy of a Magnetar: XMM Monitoring of the Transient Anomalous X-ray Pulsar XTE J1810-197

    Get PDF
    We present the latest results from a multi-epoch timing and spectral study of the Transient Anomalous X-ray Pulsar XTE J1810-197. We have acquired seven observations of this pulsar with the Newton X-ray Multi-mirror Mission (XMM-Newton) over the course of two and a half years, to follow the spectral evolution as the source fades from outburst. The spectrum is arguably best characterized by a two-temperature blackbody whose luminosities are decreasing exponentially with tau_1 = 870 days and tau_2 = 280 days, respectively. The temperatures of these components are currently cooling at a rate of 22% per year from a nearly constant value recorded at earlier epochs of kT_1 = 0.25 keV and kT_2 = 0.67 keV, respectively. The new data show that the temperature T_1 and luminosity of that component have nearly returned to their historic quiescent levels and that its pulsed fraction, which has steadily decreased with time, is now consistent with the previous lack of detected pulsations in quiescence. We also summarize the detections of radio emission from XTE J1810-197, the first confirmed for any AXP. We consider possible models for the emission geometry and mechanisms of XTE J1810-197.Comment: 8 pages, 7 figures, 1 table, latex. To appear in the proceedings of "Isolated Neutron Stars", Astrophysics & Space Science, in pres

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters

    Towards a glacial-sensitive model of island biogeography

    Get PDF
    Although the role that Pleistocene glacial cycles have played in shaping the present biota of oceanic islands world-wide has long been recognized, their geographical, biogeographical and ecological implications have not yet been fully incorporated within existing biogeographical models. Here we summarize the different types of impacts that glacial cycles may have had on oceanic islands, including cyclic changes in climate, shifts in marine currents and wind regimes and, especially, cycles of sea level change. The latter have affected geographical parameters such as island area, isolation and elevation. They have also influenced the configurations of archipelagos via island fusion and fission, and cycles of seamount emergence and submergence. We hypothesize that these sea level cycles have had significant impacts on the biogeographical processes shaping oceanic island biotas, influencing the rates and patterns of immigration and extinction and hence species richness. Here we provide a first step toward the development of a glacial-sensitive model of island biogeography, representing the tentative temporal evolution of those biogeographical parameters during the last glacial cycle. From this reasoning we attempt to derive predictions regarding the imprint of sea level cycles on genetic, demographic or biogeographical patterns within remote island biotas

    Reduced meiotic recombination on the XY bivalent is correlated with an increased incidence of sex chromosome aneuploidy in men with non-obstructive azoospermia

    Get PDF
    Both aberrant meiotic recombination and an increased frequency of sperm aneuploidy have been observed in infertile men. However, this association has not been demonstrated within individual men. The purpose of this study was to determine the association between the frequency of recombination observed in pachytene spermatocytes and the frequency of aneuploidy in sperm from the same infertile men. Testicular tissue from seven men with non-obstructive azoospermia (NOA) and six men undergoing vasectomy reversal (controls) underwent meiotic analysis. Recombination sites were recorded for individual chromosomes. Testicular and ejaculated sperm from NOA patients and controls, respectively, were tested for aneuploidy frequencies for chromosomes 9, 21, X and Y. There was a significant increase in the frequency of pachytene cells with at least one achiasmate bivalent in infertile men (12.4%) compared with controls (4.2%, P = 0.02). Infertile men also had a significantly higher frequency of sperm disomy than controls for chromosomes 21 (1.0% versus 0.24%, P = 0.001), XX (0.16% versus 0.03%, P = 0.004) and YY (0.12% versus 0.03%, P = 0.04). There was a significant correlation between meiotic cells with zero MLH1 foci in the sex body and total sex chromosome disomy (XX + YY + XY) in sperm from men with NOA (r = 0.79, P = 0.036)

    Diagnosis and management of spinal muscular atrophy : Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care

    Get PDF
    Spinal muscular atrophy (SMA) is a severe neuromuscular disorder due to a defect in the survival motor neuron 1 (SMN1) gene. Its incidence is approximately 1 in 11,000 live births. In 2007, an International Conference on the Standard of Care for SMA published a consensus statement on SMA standard of care that has been widely used throughout the world. Here we report a two-part update of the topics covered in the previous recommendations. In part 1 we present the methods used to achieve these recommendations, and an update on diagnosis, rehabilitation, orthopedic and spinal management; and nutritional, swallowing and gastrointestinal management. Pulmonary management, acute care, other organ involvement, ethical issues, medications, and the impact of new treatments for SMA are discussed in part 2

    The delivery of personalised, precision medicines via synthetic proteins

    Get PDF
    Introduction: The design of advanced drug delivery systems based on synthetic and su-pramolecular chemistry has been very successful. Liposomal doxorubicin (Caelyx®), and liposomal daunorubicin (DaunoXome®), estradiol topical emulsion (EstrasorbTM) as well as soluble or erodible polymer systems such as pegaspargase (Oncaspar®) or goserelin acetate (Zoladex®) represent considerable achievements. The Problem: As deliverables have evolved from low molecular weight drugs to biologics (currently representing approximately 30% of the market), so too have the demands made of advanced drug delivery technology. In parallel, the field of membrane trafficking (and endocytosis) has also matured. The trafficking of specific receptors i.e. material to be recycled or destroyed, as well as the trafficking of protein toxins has been well characterized. This, in conjunction with an ability to engineer synthetic, recombinant proteins provides several possibilities. The Solution: The first is using recombinant proteins as drugs i.e. denileukin diftitox (Ontak®) or agalsidase beta (Fabrazyme®). The second is the opportunity to use protein toxin architecture to reach targets that are not normally accessible. This may be achieved by grafting regulatory domains from multiple species to form synthetic proteins, engineered to do multiple jobs. Examples include access to the nucleocytosolic compartment. Herein the use of synthetic proteins for drug delivery has been reviewed
    corecore