11,020 research outputs found

    Normal ground state of dense relativistic matter in a magnetic field

    Full text link
    The properties of the ground state of relativistic matter in a magnetic field are examined within the framework of a Nambu-Jona-Lasinio model. The main emphasis of this study is the normal ground state, which is realized at sufficiently high temperatures and/or sufficiently large chemical potentials. In contrast to the vacuum state, which is characterized by the magnetic catalysis of chiral symmetry breaking, the normal state is accompanied by the dynamical generation of the chiral shift parameter Δ\Delta. In the chiral limit, the value of Δ\Delta determines a relative shift of the longitudinal momenta (along the direction of the magnetic field) in the dispersion relations of opposite chirality fermions. We argue that the chirality remains a good approximate quantum number even for massive fermions in the vicinity of the Fermi surface and, therefore, the chiral shift is expected to play an important role in many types of cold dense relativistic matter, relevant for applications in compact stars. The qualitative implications of the revealed structure of the normal ground state on the physics of protoneutron stars are discussed. A noticeable feature of the Δ\Delta parameter is that it is insensitive to temperature when T≪μ0T \ll \mu_0, where μ0\mu_0 is the chemical potential, and {\it increases} with temperature for T>μ0T > \mu_0. The latter implies that the chiral shift parameter is also generated in the regime relevant for heavy ion collisions.Comment: 28 pages, 6 figures; v2: title changed in journa

    A model study of enhanced oil recovery by flooding with aqueous surfactant solution and comparison with theory

    Get PDF
    With the aim of elucidating the details of enhanced oil recovery by surfactant solution flooding, we have determined the detailed behavior of model systems consisting of a packed column of calcium carbonate particles as the porous rock, n-decane as the trapped oil, and aqueous solutions of the anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT). The AOT concentration was varied from zero to above the critical aggregation concentration (cac). The salt content of the aqueous solutions was varied to give systems of widely different, post-cac oil–water interfacial tensions. The systems were characterized in detail by measuring the permeability behavior of the packed columns, the adsorption isotherms of AOT from the water to the oil–water interface and to the water–calcium carbonate interface, and oil–water–calcium carbonate contact angles. Measurements of the percent oil recovery by pumping surfactant solutions into calcium carbonate-packed columns initially filled with oil were analyzed in terms of the characterization results. We show that the measured contact angles as a function of AOT concentration are in reasonable agreement with those calculated from values of the surface energy of the calcium carbonate–air surface plus the measured adsorption isotherms. Surfactant adsorption onto the calcium carbonate–water interface causes depletion of its aqueous-phase concentration, and we derive equations which enable the concentration of nonadsorbed surfactant within the packed column to be estimated from measured parameters. The percent oil recovery as a function of the surfactant concentration is determined solely by the oil–water–calcium carbonate contact angle for nonadsorbed surfactant concentrations less than the cac. For surfactant concentrations greater than the cac, additional oil removal occurs by a combination of solubilization and emulsification plus oil mobilization due to the low oil–water interfacial tension and a pumping pressure increase

    Benzene formation in the inner regions of protostellar disks

    Get PDF
    Benzene (c-C6H6) formation in the inner 3 AU of a protostellar disk can be efficient, resulting in high abundances of benzene in the midplane region. The formation mechanism is different to that found in interstellar clouds and in protoplanetary nebulae, and proceeds mainly through the reaction between allene (C3H4) and its ion. This has implications for PAH formation, in that some fraction of PAHs seen in the solar system could be native rather than inherited from the interstellar medium.Comment: 9 pages, 2 colour figures, to be published in the Astrophysical Journal Letter

    Temperature dependent graphene suspension due to thermal Casimir interaction

    Full text link
    Thermal effects contributing to the Casimir interaction between objects are usually small at room temperature and they are difficult to separate from quantum mechanical contributions at higher temperatures. We propose that the thermal Casimir force effect can be observed for a graphene flake suspended in a fluid between substrates at the room temperature regime. The properly chosen materials for the substrates and fluid induce a Casimir repulsion. The balance with the other forces, such as gravity and buoyancy, results in a stable temperature dependent equilibrium separation. The suspended graphene is a promising system due to its potential for observing thermal Casimir effects at room temperature.Comment: 5 pages, 4 figures, in APL production 201

    Non Local Electron-Phonon Correlations in a Dispersive Holstein Model

    Full text link
    Due to the dispersion of optical phonons, long range electron-phonon correlations renormalize downwards the coupling strength in the Holstein model. We evaluate the size of this effect both in a linear chain and in a square lattice for a time averaged {\it e-ph} potential, where the time variable is introduced according to the Matsubara formalism. Mapping the Holstein Hamiltonian onto the time scale we derive the perturbing source current which appears to be non time retarded. This property permits to disentangle phonon and electron coordinates in the general path integral for an electron coupled to dispersive phonons. While the phonon paths can be integrated out analytically, the electron path integrations have to be done numerically. The equilibrium thermodynamic properties of the model are thus obtained as a function of the electron hopping value and of the phonon spectrum parameters. We derive the {\it e-ph} corrections to the phonon free energy and show that its temperature derivatives do not depend on the {\it e-ph} effective coupling hence, the Holstein phonon heat capacity is strictly harmonic. A significant upturn in the low temperature total heat capacity over TT ratio is attributed to the electron hopping which largely contributes to the action.Comment: Phys.Rev.B (2005

    Expanding Lie (super)algebras through abelian semigroups

    Get PDF
    We propose an outgrowth of the expansion method introduced by de Azcarraga et al. [Nucl. Phys. B 662 (2003) 185]. The basic idea consists in considering the direct product between an abelian semigroup S and a Lie algebra g. General conditions under which relevant subalgebras can systematically be extracted from S \times g are given. We show how, for a particular choice of semigroup S, the known cases of expanded algebras can be reobtained, while new ones arise from different choices. Concrete examples, including the M algebra and a D'Auria-Fre-like Superalgebra, are considered. Finally, we find explicit, non-trace invariant tensors for these S-expanded algebras, which are essential ingredients in, e.g., the formulation of Supergravity theories in arbitrary space-time dimensions.Comment: 42 pages, 8 figures. v2: Improved figures, updated notation and terminolog

    Luminosity, Energy and Polarization Studies for the Linear Collider: Comparing e+e- and e-e- for NLC and TESLA

    Full text link
    We present results from luminosity, energy and polarization studies at a future Linear Collider. We compare e+e- and e-e- modes of operation and consider both NLC and TESLA beam parameter specifications at a center-of-mass energy of 500 GeV. Realistic colliding beam distributions are used, which include dynamic effects of the beam transport from the Damping Rings to the Interaction Point. Beam-beam deflections scans and their impact for beam-based feedbacks are considered. A transverse kink instability is studied, including its impact on determining the luminosity-weighted center-of-mass energy. Polarimetry in the extraction line from the IP is presented, including results on beam distributions at the Compton IP and at the Compton detector.Comment: 17 pages, 12 figures. Presented at 5th International Workshop on Electron-Electron Interactions at TeV Energies, December 12-14, 2003, Santa Cruz, C
    • …
    corecore