15,564 research outputs found

    Population synthesis of accreting white dwarfs: II. X-ray and UV emission

    Full text link
    Accreting white dwarfs (WDs) with non-degenerate companions are expected to emit in soft X-rays and the UV, if accreted H-rich material burns stably. They are an important component of the unresolved emission of elliptical galaxies, and their combined ionizing luminosity may significantly influence the optical line emission from warm ISM. In an earlier paper we modeled populations of accreting WDs, first generating WD with main-sequence, Hertzsprung gap and red giant companions with the population synthesis code \textsc{BSE}, and then following their evolution with a grid of evolutionary tracks computed with \textsc{MESA}. Now we use these results to estimate the soft X-ray (0.3-0.7keV), H- and He II-ionizing luminosities of nuclear burning WDs and the number of super-soft X-ray sources for galaxies with different star formation histories. For the starburst case, these quantities peak at ∼1\sim 1 Gyr and decline by ∼1−3\sim 1-3 orders of magnitude by the age of 10 Gyr. For stellar ages of ∼\sim~10 Gyr, predictions of our model are consistent with soft X-ray luminosities observed by Chandra in nearby elliptical galaxies and He II 4686A˚/Hβ\AA/\rm{H}{\beta} line ratio measured in stacked SDSS spectra of retired galaxies, the latter characterising the strength and hardness of the UV radiation field. However, the soft X-ray luminosity and He~II~4686A˚/Hβ\AA/\rm{H}{\beta} ratio are significantly overpredicted for stellar ages of ≲4−8\lesssim 4-8 Gyr. We discuss various possibilities to resolve this discrepancy and tentatively conclude that it may be resolved by a modification of the typically used criteria of dynamically unstable mass loss for giant stars.Comment: 13 pages, 12 figures, MNRAS accepte

    Next generation population synthesis of accreting white dwarfs: I. Hybrid calculations using BSE + MESA

    Full text link
    Accreting, nuclear-burning white dwarfs have been deemed to be candidate progenitors of type Ia supernovae, and to account for supersoft X-ray sources, novae, etc. depending on their accretion rates. We have carried out a binary population synthesis study of their populations using two algorithms. In the first, we use the binary population synthesis code \textsf{BSE} as a baseline for the "rapid" approach commonly used in such studies. In the second, we employ a "hybrid" approach, in which we use \textsf{BSE} to generate a population of white dwarfs (WD) with non-degenerate companions on the verge of filling their Roche lobes. We then follow their mass transfer phase using the detailed stellar evolution code \textsf{MESA}. We investigate the evolution of the number of rapidly accreting white dwarfs (RAWDs) and stably nuclear-burning white dwarfs (SNBWDs), and estimate the type Ia supernovae (SNe Ia) rate produced by "single-degenerate" systems (SD). We find significant differences between the two algorithms in the predicted numbers of SNBWDs at early times, and also in the delay time distribution (DTD) of SD SNe Ia. Such differences in the treatment of mass transfer may partially account for differences in the SNe Ia rate and DTD found by different groups. Adopting 100\% efficiency for helium burning, the rate of SNe Ia produced by the SD-channel in a Milky-way-like galaxy in our calculations is 2.0×10−4yr−12.0\times10^{-4}\rm{yr}^{-1}, more than an order of magnitude below the observationally inferred value. In agreement with previous studies, our calculated SD DTD is inconsistent with observations.Comment: 13 pages,11 figures, accepted by MNRA

    Phonological Processing in Human Auditory Cortical Fields

    Get PDF
    We used population-based cortical-surface analysis of functional magnetic imaging data to characterize the processing of consonant–vowel–consonant syllables (CVCs) and spectrally matched amplitude-modulated noise bursts (AMNBs) in human auditory cortex as subjects attended to auditory or visual stimuli in an intermodal selective attention paradigm. Average auditory cortical field (ACF) locations were defined using tonotopic mapping in a previous study. Activations in auditory cortex were defined by two stimulus-preference gradients: (1) Medial belt ACFs preferred AMNBs and lateral belt and parabelt fields preferred CVCs. This preference extended into core ACFs with medial regions of primary auditory cortex (A1) and the rostral field preferring AMNBs and lateral regions preferring CVCs. (2) Anterior ACFs showed smaller activations but more clearly defined stimulus preferences than did posterior ACFs. Stimulus preference gradients were unaffected by auditory attention suggesting that ACF preferences reflect the automatic processing of different spectrotemporal sound features

    Sanctuary on the Mississippi: St. Louis as a Way Station for Mormon Emigration

    Get PDF
    In the decades before the Civil War, St. Louis was considered by The Church of Jesus Christ of Latter-day Saints to be the most Mormon-friendly city outside Salt Lake City. Thomas Farmer and Fred Woods examine the ways Mormons used St. Louis as a way station to earn money and replenish resources, while at the same time contributing to its growth

    Functional Properties of Human Auditory Cortical Fields

    Get PDF
    While auditory cortex in non-human primates has been subdivided into multiple functionally specialized auditory cortical fields (ACFs), the boundaries and functional specialization of human ACFs have not been defined. In the current study, we evaluated whether a widely accepted primate model of auditory cortex could explain regional tuning properties of fMRI activations on the cortical surface to attended and non-attended tones of different frequency, location, and intensity. The limits of auditory cortex were defined by voxels that showed significant activations to non-attended sounds. Three centrally located fields with mirror-symmetric tonotopic organization were identified and assigned to the three core fields of the primate model while surrounding activations were assigned to belt fields following procedures similar to those used in macaque fMRI studies. The functional properties of core, medial belt, and lateral belt field groups were then analyzed. Field groups were distinguished by tonotopic organization, frequency selectivity, intensity sensitivity, contralaterality, binaural enhancement, attentional modulation, and hemispheric asymmetry. In general, core fields showed greater sensitivity to sound properties than did belt fields, while belt fields showed greater attentional modulation than core fields. Significant distinctions in intensity sensitivity and contralaterality were seen between adjacent core fields A1 and R, while multiple differences in tuning properties were evident at boundaries between adjacent core and belt fields. The reliable differences in functional properties between fields and field groups suggest that the basic primate pattern of auditory cortex organization is preserved in humans. A comparison of the sizes of functionally defined ACFs in humans and macaques reveals a significant relative expansion in human lateral belt fields implicated in the processing of speech
    • …
    corecore