1,036 research outputs found

    On the Detection of Supermassive Primordial Stars. II. Blue Supergiants

    Get PDF
    Supermassive primordial stars in hot, atomically-cooling haloes at zz \sim 15 - 20 may have given birth to the first quasars in the universe. Most simulations of these rapidly accreting stars suggest that they are red, cool hypergiants, but more recent models indicate that some may have been bluer and hotter, with surface temperatures of 20,000 - 40,000 K. These stars have spectral features that are quite distinct from those of cooler stars and may have different detection limits in the near infrared (NIR) today. Here, we present spectra and AB magnitudes for hot, blue supermassive primordial stars calculated with the TLUSTY and CLOUDY codes. We find that photometric detections of these stars by the James Webb Space Telescope (JWST) will be limited to zz \lesssim 10 - 12, lower redshifts than those at which red stars can be found, because of quenching by their accretion envelopes. With moderate gravitational lensing, Euclid and the Wide-Field Infrared Space Telescope (WFIRST) could detect blue supermassive stars out to similar redshifts in wide-field surveys.Comment: 9 pages, 5 figures, accepted by MNRA

    Aristotle's <i>On Sophistical Refutations</i>

    Get PDF
    This is a so-called "untimely review," that is a review of a work by a renowned author from the past where the reviewer pretends that the work has just appeared to assess its value for current discussions

    The Two-Handed Tile Assembly Model is not Intrinsically Universal

    Get PDF
    The Two-Handed Tile Assembly Model (2HAM) is a model of algorithmic self-assembly in which large structures, or assemblies of tiles, are grown by the binding of smaller assemblies. In order to bind, two assemblies must have matching glues that can simultaneously touch each other, and stick together with strength that is at least the temperature τ, where τ is some fixed positive integer. We ask whether the 2HAM is intrinsically universal. In other words, we ask: is there a single 2HAM tile set U which can be used to simulate any instance of the model? Our main result is a negative answer to this question. We show that for all τ′ < τ, each temperature-τ′ 2HAM tile system does not simulate at least one temperature-τ 2HAM tile system. This impossibility result proves that the 2HAM is not intrinsically universal and stands in contrast to the fact that the (single-tile addition) abstract Tile Assembly Model is intrinsically universal. On the positive side, we prove that, for every fixed temperature τ ≥ 2, temperature-τ 2HAM tile systems are indeed intrinsically universal. In other words, for each τ there is a single intrinsically universal 2HAM tile set U_τ that, when appropriately initialized, is capable of simulating the behavior of any temperature-τ 2HAM tile system. As a corollary, we find an infinite set of infinite hierarchies of 2HAM systems with strictly increasing simulation power within each hierarchy. Finally, we show that for each τ, there is a temperature-τ 2HAM system that simultaneously simulates all temperature-τ 2HAM systems

    The Two-Handed Tile Assembly Model Is Not Intrinsically Universal

    Get PDF
    In this paper, we study the intrinsic universality of the well-studied Two-Handed Tile Assembly Model (2HAM), in which two “supertile” assemblies, each consisting of one or more unit-square tiles, can fuse together (self-assemble) whenever their total attachment strength is at least the global temperature τ. Our main result is that for all τ′ < τ, each temperature-τ′ 2HAM tile system cannot simulate at least one temperature-τ 2HAM tile system. This impossibility result proves that the 2HAM is not intrinsically universal, in stark contrast to the simpler abstract Tile Assembly Model which was shown to be intrinsically universal (The tile assembly model is intrinsically universal, FOCS 2012). On the positive side, we prove that, for every fixed temperature τ ≥ 2, temperature-τ 2HAM tile systems are intrinsically universal: for each τ there is a single universal 2HAM tile set U that, when appropriately initialized, is capable of simulating the behavior of any temperature τ 2HAM tile system. As a corollary of these results we find an infinite set of infinite hierarchies of 2HAM systems with strictly increasing power within each hierarchy. Finally, we show how to construct, for each τ, a temperature-τ 2HAM system that simultaneously simulates all temperature-τ 2HAM systems

    A Large-Scale Bank of Organ Donor Bone Marrow and Matched Mesenchymal Stem Cells for Promoting Immunomodulation and Transplant Tolerance

    Get PDF
    Induction of immune tolerance for solid organ and vascular composite allografts is the Holy Grail for transplantation medicine. This would obviate the need for life-long immunosuppression which is associated with serious adverse outcomes, such as infections, cancers, and renal failure. Currently the most promising means of tolerance induction is through establishing a mixed chimeric state by transplantation of donor hematopoietic stem cells; however, with the exception of living donor renal transplantation, the mixed chimerism approach has not achieved durable immune tolerance on a large scale in preclinical or clinical trials with other solid organs or vascular composite allotransplants (VCA). Ossium Health has established a bank of cryopreserved bone marrow (BM), termed “hematopoietic progenitor cell (HPC), Marrow,” recovered from deceased organ donor vertebral bodies. This new source for hematopoietic cell transplant will be a valuable resource for treating hematological malignancies as well as for inducing transplant tolerance. In addition, we have discovered and developed a large source of mesenchymal stem (stromal) cells (MSC) tightly associated with the vertebral body bone fragment byproduct of the HPC, Marrow recovery process. Thus, these vertebral bone adherent MSC (vBA-MSC) are matched to the banked BM obtained from each donor, as opposed to third-party MSC, which enhances safety and potentially efficacy. Isolation and characterization of vBA-MSC from over 30 donors has demonstrated that the cells are no different than traditional BM-MSC; however, their abundance is >1,000-fold higher than obtainable from living donor BM aspirates. Based on our own unpublished data as well as reports published by others, MSC facilitate chimerism, especially at limiting hematopoietic stem and progenitor cell (HSPC) numbers and increase safety by controlling and/or preventing graft-vs.-host-disease (GvHD). Thus, vBA-MSC have the potential to facilitate mixed chimerism, promote complementary peripheral immunomodulatory functions and increase safety of BM infusions. Both HPC, Marrow and vBA-MSC have potential use in current VCA and solid organ transplant (SOT) tolerance clinical protocols that are amenable to “delayed tolerance.” Current trials with HPC, Marrow are planned with subsequent phases to include vBA-MSC for tolerance of both VCA and SOT

    Small-Scale Structure in the SDSS and LCDM: Isolated L* Galaxies with Bright Satellites

    Full text link
    We use a volume-limited spectroscopic sample of isolated galaxies in the Sloan Digital Sky Survey (SDSS) to investigate the frequency and radial distribution of luminous (M_r <~ -18.3) satellites like the Large Magellanic Cloud (LMC) around ~L* Milky Way analogs and compare our results object-by-object to LCDM predictions based on abundance matching in simulations. We show that 12% of Milky Way-like galaxies host an LMC-like satellite within 75 kpc (projected), and 42 % within 250 kpc (projected). This implies ~10% have a satellite within the distance of the LMC, and ~40% of L* galaxies host a bright satellite within the virialized extent of their dark matter halos. Remarkably, the simulation reproduces the observed frequency, radial dependence, velocity distribution, and luminosity function of observed secondaries exceptionally well, suggesting that LCDM provides an accurate reproduction of the observed Universe to galaxies as faint as L~10^9 Lsun on ~50 kpc scales. When stacked, the observed projected pairwise velocity dispersion of these satellites is sigma~160 km/s, in agreement with abundance-matching expectations for their host halo masses. Finally, bright satellites around L* primaries are significantly redder than typical galaxies in their luminosity range, indicating that environmental quenching is operating within galaxy-size dark matter halos that typically contain only a single bright satellite. This redness trend is in stark contrast to the Milky Way's LMC, which is unusually blue even for a field galaxy. We suggest that the LMC's discrepant color might be further evidence that it is undergoing a triggered star-formation event upon first infall.Comment: 14 pages, 11 figures; accepted to Ap

    Ischemia considerations for the development of an organ and tissue donor derived bone marrow bank

    Get PDF
    Background Deceased organ donors represent an untapped source of therapeutic bone marrow (BM) that can be recovered in 3–5 times the volume of that obtained from living donors, tested for quality, cryopreserved, and banked indefinitely for future on-demand use. A challenge for a future BM banking system will be to manage the prolonged ischemia times that are inevitable when bones procured at geographically-dispersed locations are shipped to distant facilities for processing. Our objectives were to: (a) quantify, under realistic field conditions, the relationship between ischemia time and the quality of hematopoietic stem and progenitor cells (HSPCs) derived from deceased-donor BM; (b) identify ischemia-time boundaries beyond which HSPC quality is adversely affected; (c) investigate whole-body cooling as a strategy for preserving cell quality; and (d) investigate processing experience as a variable affecting quality. Methods Seventy-five bones from 62 donors were analyzed for CD34+ viability following their exposure to various periods of warm-ischemia time (WIT), cold-ischemia time (CIT), and body-cooling time (BCT). Regression models were developed to quantify the independent associations of WIT, CIT, and BCT, with the viability and function of recovered HSPCs. Results Results demonstrate that under “real-world” scenarios: (a) combinations of warm- and cold-ischemia times favorable to the recovery of high-quality HSPCs are achievable (e.g., CD34+ cell viabilities in the range of 80–90% were commonly observed); (b) body cooling prior to bone recovery is detrimental to cell viability (e.g., CD34+ viability  89% without body cooling); (c) vertebral bodies (VBs) are a superior source of HSPCs compared to ilia (IL) (e.g., %CD34+ viability > 80% when VBs were the source, vs. < 74% when IL were the source); and (d) processing experience is a critical variable affecting quality. Conclusions Our models can be used by an emerging BM banking system to formulate ischemia-time tolerance limits and data-driven HSPC quality-acceptance standards. Keywords: Deceased-donor bone marrow, Bone marrow banking, Bone marrow ischemia time, Hematopoietic stem cell transplan

    Limitations of Self-Assembly at Temperature One (extended abstract)

    Full text link
    We prove that if a subset X of the integer Cartesian plane weakly self-assembles at temperature 1 in a deterministic (Winfree) tile assembly system satisfying a natural condition known as *pumpability*, then X is a finite union of doubly periodic sets. This shows that only the most simple of infinite shapes and patterns can be constructed using pumpable temperature 1 tile assembly systems, and gives strong evidence for the thesis that temperature 2 or higher is required to carry out general-purpose computation in a tile assembly system. Finally, we show that general-purpose computation is possible at temperature 1 if negative glue strengths are allowed in the tile assembly model
    corecore