548 research outputs found

    Growth and evolution of tetracyanoquinodimethane and potassium coadsorption phases on Ag(111)

    Get PDF
    Alkali-doping is a very efficient way of tuning the electronic properties of active molecular layers in (opto-) electronic devices based on organic semiconductors. In this context, we report on the phase formation and evolution of charge transfer salts formed by 7, 7, 8, 8-tetracyanoquinodimethane (TCNQ) in coadsorption with potassium on a Ag(111) surface. Based on an in-situ study using low energy electron microscopy and diffraction we identify the structural properties of four phases with different stoichiometries, and follow their growth and inter-phase transitions. We label these four phases α to δ, with increasing K content, the last two of which (γ and δ-phases) have not been previously reported. During TCNQ deposition on a K-precovered Ag(111) surface we find a superior stability of δ-phase islands compared to the γ-phase; continued TCNQ deposition leads to a direct transition from the δ to the β-phase when the K : TCNQ ratio corresponding to this phase regime is reached, with no intermediate γ-phase formation. When, instead, K is deposited on a surface precovered with large islands of the low density commensurate (LDC) TCNQ phase that are surrounded by a TCNQ 2D-gas, we observe two different scenarios: on the one hand, in the 2D-gas phase regions, very small α-phase islands are formed (close to the resolution limit of the microscope, 10–15 nm), which transform to β-phase islands of similar size with increasing K deposition. On the other hand, the large (micrometer-sized) TCNQ islands transform directly to similarly large single-domain β-phase islands, the formation of the intermediate α-phase being suppressed. This frustration of the LDC-to-α transition can be lifted by performing the experiment at elevated temperature. In this sense, the morphology of the pure TCNQ submonolayer is conserved during phase transitions

    Alkali Doping Leads to Charge-Transfer Salt Formation in a Two-Dimensional Metal–Organic Framework

    Get PDF
    Efficient charge transfer across metal–organic interfaces is a key physical process in modern organic electronics devices, and characterization of the energy level alignment at the interface is crucial to enable a rational device design. We show that the insertion of alkali atoms can significantly change the structure and electronic properties of a metal–organic interface. Coadsorption of tetracyanoquinodimethane (TCNQ) and potassium on a Ag(111) surface leads to the formation of a two-dimensional charge transfer salt, with properties quite different from those of the two-dimensional Ag adatom TCNQ metal–organic framework formed in the absence of K doping. We establish a highly accurate structural model by combination of quantitative X-ray standing wave measurements, scanning tunnelling microscopy, and density-functional theory (DFT) calculations. Full agreement between the experimental data and the computational prediction of the structure is only achieved by inclusion of a charge-transfer-scaled dispersion correction in the DFT, which correctly accounts for the effects of strong charge transfer on the atomic polarizability of potassium. The commensurate surface layer formed by TCNQ and K is dominated by strong charge transfer and ionic bonding and is accompanied by a structural and electronic decoupling from the underlying metal substrate. The consequence is a significant change in energy level alignment and work function compared to TCNQ on Ag(111). Possible implications of charge-transfer salt formation at metal–organic interfaces for organic thin-film devices are discussed

    Role of PCSK5 Expression in Mouse Ovarian Follicle Development: Identification of the Inhibin α- and β-Subunits as Candidate Substrates

    Get PDF
    Inhibin and activin are essential dimeric glycoproteins belonging to the transforming growth factor-beta (TGFβ) superfamily. Inhibin is a heterodimer of α- and β-subunits, whereas activin is a homodimer of β-subunits. Production of inhibin is regulated during the reproductive cycle and requires the processing of pro-ligands to produce mature hormone. Furin is a subtilisin-like proprotein convertase (proconvertase) that activates precursor proteins by cleavage at basic sites during their transit through the secretory pathway and/or at the cell surface. We hypothesized that furin-like proconvertases are central regulators of inhibin α- and β-subunit processing within the ovary. We analyzed the expression of the proconvertases furin, PCSK5, PCSK6, and PCSK7 in the developing mouse ovary by real-time quantitative RT-PCR. The data showed that proconvertase enzymes are temporally expressed in ovarian cells. With the transition from two-layer secondary to pre-antral follicle, only PCSK5 mRNA was significantly elevated. Activin A selectively enhanced expression of PCSK5 mRNA and decreased expression of furin and PCSK6 in cultured two-layer secondary follicles. Inhibition of proconvertase enzyme activity by dec-RVKR-chloromethylketone (CMK), a highly specific and potent competitive inhibitor of subtilisin-like proconvertases, significantly impeded both inhibin α- and β-subunit maturation in murine granulosa cells. Overexpression of PC5/6 in furin-deficient cells led to increased inhibin α- and βB-subunit maturation. Our data support the role of proconvertase PCSK5 in the processing of ovarian inhibin subunits during folliculogenesis and suggest that this enzyme may be an important regulator of inhibin and activin bioavailability

    Probing the interplay between geometric and electronic structure in a two-dimensional K–TCNQ charge transfer network

    Get PDF
    Scanning tunnelling microscopy (STM), low energy electron diffraction (LEED), ultraviolet and soft X-ray photoelectron spectroscopy (UPS and SXPS) have been used to characterise the formation of a coadsorption phase of TCNQ and K on Ag(111), while the normal incident X-ray standing waves (NIXSW) technique has been used to obtain quantitative structural information. STM and LEED show that an ordered incommensurate phase is formed in which the K atoms are surrounded by four TCNQ molecules in a ‘windmill’ motif, characteristic of other metal/TCNQ phases, in which the nominal TCNQ : K stoichiometry is 1 : 1. UPS and SXPS data indicate the TCNQ is in a negatively-charged state. NIXSW results show that the carbon core of the TCNQ is essentially planar at a height above the Ag(111) surface closely similar to that found without coadsorbed K. In the presence of TCNQ the height of the K ions above the surface is significantly larger than on clean Ag(111), and the ions occupy sites above ‘holes’ in the TCNQ network. NIXSW data also show that the N atoms in the molecules must occupy sites with at least two different heights above the surface, which can be reconciled by a tilt or twist of the TCNQ molecules, broadly similar to the geometry that occurs in bulk TCNQ/K crystals

    Intricacies in the surgical management of appendiceal mucinous cystadenoma: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Mucinous cystadenoma is a type of mucocele of the appendix that is rarely encountered in clinical practice. Dogmatic consensus on the optimal surgical modus operandi of appendicular mucocele is lacking in the literature and this remains a subject of controversy. There is little agreement with regard to the best procedure (right hemicolectomy versus appendectomy) or the best surgical approach (laparoscopic versus laparotomy).</p> <p>Case presentation</p> <p>We report the case of a 70-year-old Asian woman from Karachi who presented with pain in the right iliac fossa for 15 days. On physical examination, a mobile and firm mass was palpable in the right iliac fossa. A colonoscopy was performed which showed external compression of the cecum. A biopsy of the mucosa was normal. Computed tomography scan showed a mucocele of the appendix with minimal periappendiceal fat stranding. She underwent an initial diagnostic laparoscopy to evaluate any mucin spillage in the peritoneal cavity. Once no spillage was identified, an open appendectomy was then performed. Intra-operatively, a frozen section of the appendiceal sample was sent to ascertain the need for an extension of surgery to a right hemicolectomy. Absence of any malignancy on the frozen section obviated the need for a surgical extension. The final histopathological examination showed a mucinous cystadenoma of the appendix. The patient was symptom-free at one year after surgery.</p> <p>Conclusion</p> <p>It is important to distinguish between mucinous cystadenomas and mucinous cystadenocarcinomas. However, this distinction remains elusive in the pre-operative setting. A simple appendectomy using an intra-operative frozen section appears to be a reasonable surgical approach for selected cases with an intact mucocele of the appendix. However, long-term follow-up is warranted in such patients to evaluate the risks of using this approach.</p

    Thermodynamic Driving Forces for Substrate Atom Extraction by Adsorption of Strong Electron Acceptor Molecules

    Get PDF
    A quantitative structural investigation is reported, aimed at resolving the issue of whether substrate adatoms are incorporated into the monolayers formed by strong molecular electron acceptors deposited onto metallic electrodes. A combination of normal-incidence X-ray standing waves, low-energy electron diffraction, scanning tunnelling microscopy, and X-ray photoelectron spectroscopy measurements demonstrate that the systems TCNQ and F4TCNQ on Ag(100) lie at the boundary between these two possibilities and thus represent ideal model systems with which to study this effect. A room-temperature commensurate phase of adsorbed TCNQ is found not to involve Ag adatoms, but to adopt an inverted bowl configuration, long predicted but not previously identified experimentally. By contrast, a similar phase of adsorbed F4TCNQ does lead to Ag adatom incorporation in the overlayer, the cyano end groups of the molecule being twisted relative to the planar quinoid ring. Density functional theory (DFT) calculations show that this behavior is consistent with the adsorption energetics. Annealing of the commensurate TCNQ overlayer phase leads to an incommensurate phase that does appear to incorporate Ag adatoms. Our results indicate that the inclusion (or exclusion) of metal atoms into the organic monolayers is the result of both thermodynamic and kinetic factors

    Complement C5a induces renal injury in diabetic kidney disease by disrupting mitochondrial metabolic agility

    Get PDF
    The sequelae of diabetes include microvascular complications such as diabetic kidney disease (DKD), which involves glucose-mediated renal injury associated with a disruption in mitochondrial metabolic agility, inflammation, and fibrosis. We explored the role of the innate immune complement component C5a, a potent mediator of inflammation, in the pathogenesis of DKD in clinical and experimental diabetes. Marked systemic elevation in C5a activity was demonstrated in patients with diabetes; conventional renoprotective agents did not therapeutically target this elevation. C5a and its receptor (C5aR1) were upregulated early in the disease process and prior to manifest kidney injury in several diverse rodent models of diabetes. Genetic deletion of C5aR1 in mice conferred protection against diabetes-induced renal injury. Transcriptomic profiling of kidney revealed diabetes-induced downregulation of pathways involved in mitochondrial fatty acid metabolism. Interrogation of the lipidomics signature revealed abnormal cardiolipin remodeling in diabetic kidneys, a cardinal sign of disrupted mitochondrial architecture and bioenergetics. In vivo delivery of an orally active inhibitor of C5aR1 (PMX53) reversed the phenotypic changes and normalized the renal mitochondrial fatty acid profile, cardiolipin remodeling, and citric acid cycle intermediates. In vitro exposure of human renal proximal tubular epithelial cells to C5a led to altered mitochondrial respiratory function and reactive oxygen species generation. These experiments provide evidence for a pivotal role of the C5a/C5aR1 axis in propagating renal injury in the development of DKD by disrupting mitochondrial agility, thereby establishing a new immunometabolic signaling pathway in DKD

    The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 6 (2016): 21728, doi:10.1038/srep21728Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.This research was supported by NSF Awards: OCE-1519578, OCE-1356708, BCS-1118340

    Direct Experimental Evidence for Substrate Adatom Incorporation into a Molecular Overlayer

    Get PDF
    While the phenomenon of metal substrate adatom incorporation into molecular overlayers is generally believed to occur in several systems, the experimental evidence for this relies on the interpretation of scanning tunneling microscopy (STM) images, which can be ambiguous and provides no quantitative structural information. We show that surface X-ray diffraction (SXRD) uniquely provides unambiguous identification of these metal adatoms. We present the results of a detailed structural study of the Au(111)-F4TCNQ system, combining surface characterization by STM, low-energy electron diffraction, and soft X-ray photoelectron spectroscopy with quantitative experimental structural information from normal incidence X-ray standing wave (NIXSW) and SXRD, together with dispersion-corrected density functional theory (DFT) calculations. Excellent agreement is found between the NIXSW data and the DFT calculations regarding the height and conformation of the adsorbed molecule, which has a twisted geometry rather than the previously supposed inverted bowl shape. SXRD measurements provide unequivocal evidence for the presence and location of Au adatoms, while the DFT calculations show this reconstruction to be strongly energetically favored
    corecore