90 research outputs found

    On ‘ground’ truth and why we should abandon the term

    Get PDF

    Detecting depolarized targets using a new geometrical perturbation filter

    Get PDF
    Target detectors using polarimetry are often focused on single targets, since these can be characterized in a simpler and deterministic way. The algorithm proposed in this paper is aimed at the more difficult problem of partial target detection (i.e. targets with arbitrary degree of polarization). The authors have already proposed a single target detector employing filters based on a geometrical perturbation. In order to enhance the algorithm to the detection of partial targets, a new vector formalism is introduced. The latter is similar to the one exploited for single targets but suitable for complete characterization of partial targets. A new feature vector is generated starting from the covariance matrix, and exploited for the perturbation method. Validation against L-band fully polarimetric airborne E-SAR, and satellite ALOS-PALSAR data and X-band dual polarimetric TerraSAR-X data is provided with significant agreement with the expected results. Additionally, a comparison with the supervised Wishart classifier is presented revealing improvements

    The design of a Space-borne multispectral canopy LiDAR to estimate global carbon stock and gross primary productivity

    Get PDF
    Understanding the dynamics of the global carbon cycle is one of the most challenging issues for the scientific community. The ability to measure the magnitude of terrestrial carbon sinks as well as monitoring the short and long term changes is vital for environmental decision making. Forests form a significant part of the terrestrial biosystem and understanding the global carbon cycle, Above Ground Biomass (AGB) and Gross Primary Productivity (GPP) are critical parameters. Current estimates of AGB and GPP are not adequate to support models of the global carbon cycle and more accurate estimates would improve predictions of the future and estimates of the likely behaviour of these sinks. Various vegetation indices have been proposed for the characterisation of forests including canopy height, canopy area, Normalised Difference Vegetation Index (NDVI) and Photochemical Reflectance Index (PRI). Both NDVI and PRI are obtained from a measure of reflectivity at specific wavelengths and have been estimated from passive measurements. The use of multi-spectral LiDAR to measure NDVI and PRI and their vertical distribution within the forest represents a significant improvement over current techniques. This paper describes an approach to the design of an advanced Multi-Spectral Canopy LiDAR, using four wavelengths for measuring the vertical profile of the canopy simultaneously. It is proposed that the instrument be placed on a satellite orbiting the Earth on a sun synchronous polar orbit to provide samples on a rectangular grid at an approximate separation of 1km with a suitable revisit frequency. The systems engineering concept design will be presented

    Requirements for a global lidar system: spaceborne lidar with wall-to-wall coverage

    Get PDF
    Lidar is the optimum technology for measuring bare Earth elevation beneath, and the structure of, vegetation. Consequently airborne laser scanning (ALS) is widely employed for use in a wide range of applications. However, ALS is not available globally nor frequently updated due to its high cost per unit area. Spaceborne lidar can map globally, but energy requirements limit existing spaceborne lidars to sparse sampling missions unsuitable for many common ALS applications. This paper derives the equations to calculate the coverage a lidar satellite could achieve for a given set of characteristics (and released open-source), then uses a cloud map to determine the number of satellites needed to achieve continuous, global coverage within a certain time-frame. Using the characteristics of existing in-orbit technology, a single lidar satellite could have a continuous swath width of 300 m when producing a 30 m resolution map. Consequently 12 satellites would be needed to produce a continuous map every five years, increasing to 418 satellites for 5 m resolution. Building twelve of the currently in-orbit lidar systems is likely to be prohibitively expensive and so the potential of technological developments to lower the cost of a GLS are discussed. Once these technologies achieve a sufficient readiness level, a Global Lidar System could be cost-effectively realised

    An icon-based synoptic visualization of fully polarimetric radar data

    Get PDF
    The visualization of fully polarimetric radar data is hindered by traditional remote sensing methodologies for displaying data due to the large number of parameters per pixel in such data, and the non-scalar nature of variables such as phase difference. In this paper, a new method is described that uses icons instead of image pixels to represent the image data so that polarimetric properties and geographic context can be visualized together. The icons are parameterized using the alpha-entropy decomposition of polarimetric data. The resulting image allows the following five variables to be displayed simultaneously: unpolarized power, alpha angle, polarimetric entropy, anisotropy and orientation angle. Examples are given for both airborne and laboratory-based imaging

    Multimodal deep learning for mapping forest dominant height by fusing GEDI with earth observation data

    Full text link
    The integration of multisource remote sensing data and deep learning models offers new possibilities for accurately mapping high spatial resolution forest height. We found that GEDI relative heights (RH) metrics exhibited strong correlation with the mean of the top 10 highest trees (dominant height) measured in situ at the corresponding footprint locations. Consequently, we proposed a novel deep learning framework termed the multi-modal attention remote sensing network (MARSNet) to estimate forest dominant height by extrapolating dominant height derived from GEDI, using Setinel-1 data, ALOS-2 PALSAR-2 data, Sentinel-2 optical data and ancillary data. MARSNet comprises separate encoders for each remote sensing data modality to extract multi-scale features, and a shared decoder to fuse the features and estimate height. Using individual encoders for each remote sensing imagery avoids interference across modalities and extracts distinct representations. To focus on the efficacious information from each dataset, we reduced the prevalent spatial and band redundancies in each remote sensing data by incorporating the extended spatial and band reconstruction convolution modules in the encoders. MARSNet achieved commendable performance in estimating dominant height, with an R2 of 0.62 and RMSE of 2.82 m, outperforming the widely used random forest approach which attained an R2 of 0.55 and RMSE of 3.05 m. Finally, we applied the trained MARSNet model to generate wall-to-wall maps at 10 m resolution for Jilin, China. Through independent validation using field measurements, MARSNet demonstrated an R2 of 0.58 and RMSE of 3.76 m, compared to 0.41 and 4.37 m for the random forest baseline. Our research demonstrates the effectiveness of a multimodal deep learning approach fusing GEDI with SAR and passive optical imagery for enhancing the accuracy of high resolution dominant height estimation
    • 

    corecore