871 research outputs found

    Chinese Culture and Postmodern Diplomacy

    Get PDF
    The United States presently finds itself standing at a remarkable historical juncture. As the world\u27s only remaining superpower, it enjoys the benefit of military superiority, economic prosperity, and vast cultural influence. Yet despite its seeming superiority to other nations -or, perhaps, in spite of it- the future is not necessarily secured for the United States. While Americans may be able to take American power for granted, there is a general sense that the United States is either at or near the apex of its influence; that, as Samuel Huntington has argued, while the U.S. will remain strong, its strength will decline relative to that of other civilizations

    Mathematical specifications of the Onboard Navigation Package (ONPAC) simulator (revision 1)

    Get PDF
    The mathematical theory of the computational algorithms employed in the onboard navigation package system is described. This system, which simulates an onboard navigation processor, was developed to aid in the design and evaluation of onboard navigation software. The mathematical formulations presented include the factorized UDU(T) form of the extended Kalman filter, the equations of motion of the user satellite, the user clock equations, the observation equations and their partial derivatives, the coodinate transformations, and the matrix decomposition algorithms

    Spectral structure near the 11.3 micron emission feature

    Get PDF
    If the 11.3 micron emission feature seen in the spectra of many planetary nebulae, H II regions, and reflection nebulae is attributable to polycyclic aromatic hydrocarbons (PAHs), then additional features should be present between 11.3 and 13.0 microns. Moderate resolution spectra of NGC 7027, HD 44179, BD+30 deg 3639, and IRAS 21282+5050 are presented which show evidence for new emission features centered near 12.0 and 12.7 microns. These are consistent with an origin from PAHs and can be used to constrain the molecular structure of the family of PAHs responsible for the infrared features. There is an indication that coronene-like PAHs contribute far more to the emission from NGC 7027 than to the emission from HD 44179. The observed asymmetric profile of the 11.3 micron band in all the spectra is consistent with the slight anharmonicity expected in the C-H out-of-plane bending mode in PAHs. A series of repeating features between 10 and 11 microns in the spectrum of HD 44179 suggests a simple hydride larger than 2 atoms is present in the gas phase in this object

    Characterization of three types of silicon solar cells for SEPS Deep Space Mission. Volume 3: Current-voltage characteristics of spectrolab sculptured BSR/P+ (K7), BSR/P+ (K6.5) and BSR (K4.5) cells as a function of temperature and intensity

    Get PDF
    Three types of high performance silicon solar cells, sculptured BSR/P+(K7), BSR/P+(K6.5) and BSR(K4.5) manufactured by Spectrolab were evaluated for their low temperature and low intensity performance. Sixteen cells of each type were subjected to 11 temperatures and 9 intensities. The sculptured BSR/P+(K7) cells provided the greatest maximum power output both at 1 AU and at LTLI conditions. The average efficiencies of this cell were 14.4 percent at 1 SC/+25 deg C and 18.5 percent at 0.086 SC/-100 deg C

    Airborne observations of the infrared emission bands

    Get PDF
    Earlier airborne studies of the infrared bands between 5 and 8 microns have now been extended to a sample of southern sources selected from the IRAS Low Resolution Spectra (LRS) atlas. The correlation between the strongest bands at 6.2 and 7.7 microns is now based on a total sample of 40 sources and is very strong. A new emission band at 5.2 microns, previously predicted for polycyclic aromatic hydrocarbons (PAHs), is recognized in 27 sources; it too correlates with the dominant 7.7 micron band, showing that the 5.2 micron feature also belongs to the generic spectrum of PAH features at 3.3, 5.6, 6.2, 6.2, 7.7, 8.7, 11.3, and 12.7 microns. Sufficient sources are had now to define the relative strengths of most of these bands in three separate nebular environments: planetaries, H II regions, and reflection nebulae. Significant variations are detected in the generic spectra of PAHs in these different environments which are echoed by variations in the exact wavelength of the strong 7.7 micron peak. The earlier suggestion that, in planetaries, the fraction of total emission observed by IRAS that is carried by the PAH emissions is correlated with nebular gas-phase C/O ratio is supported by the addition of newly-observed southern planetaries, including the unusually carbon-rich (WC10) nebular nuclei. These (WC10) nuclei also exhibit a strong plateau of emission linking the 6.2 and 7.7 micron features

    Infrared spectra of WC10 planetary nebulae nuclei

    Get PDF
    The 5.2 to 8.0 micron spectra are presented for two planetary nebulae nuclei Hen1044 (He2-113) and CPD-56 8032. The unidentified infrared (UIR) emission bands at 6.2 microns, 6.9 microns, 7.7 microns are present in the spectra of Hen1044 and in CPD-56 8032, and the 8.6 micron band is present in the long wavelength shoulder of the 7.7 micron band in the spectrum of CPD-56 8032. The 8 to 13 micron spectra of these two stars by Aitken et. al. clearly show the presence of the 8.6 micron band in He2-113 while weakly resolving this feature in the spectra of CPD-56 8032. In their spectra the 11.3 micron band is also clearly detected in both objects. The 6.2 micron and 7.7 micron bands are characteristic of the infrared active C-C stretching modes in polycyclic aromatic hydrocarbons (PAHs); the 3.3 micron, 8.6 micron, and 11.3 micron bands are respectively assigned to the in-plane stretching mode, the in-plane bending mode, and the out-of-plane bending mode of the aromatic CH bond. The weak 6.9 micron emission feature is attributed to the UIR spectrum by Bregman et. al. The IRAS LRS spectra of He2-113 (IRAS 14562-5406) and CPD-56 8032 (IRAS 17047-5650) are presented. Cohen et. al. identify the broad plateau from 11.3 to 13.0 microns in the spectrum of He2-113 with increased hydrogenation of PAHs. This broad plateau is not seen in the LRS spectrum of CPD-56 8032. Also, He2-113 has greater infrared excess emission in the 17-22 micron region than does CPD-56 8032

    Spectral Irradiance Calibration in the Infrared. 7. 5-14 microns Spectroscopy of the Asteroids Ceres, Vesta, and Pallas

    Get PDF
    We describe our efforts to seek "closure" in our infrared absolute calibration scheme by comparing spectra of asteroids, absolutely calibrated through reference stars, with "Standard Thermal Models" and "Thermophysical Models" for these bodies. Our use of continuous 5-14 microns airborne spectra provides complete sampling of the rise to, and peak, of the infrared spectral energy distribution and constrains these models. Such models currently support the absolute calibration of ISO-PHOT at far-infrared wave- lengths (as far as 300 microns), and contribute to that of the Mid-Infrared Spectrometer on the "Infrared Telescope in Space" in the 6-12 microns region. The best match to our observed spectra of Ceres and Vesta is a, standard thermal model using a beaming factor of unity. We also report the presence of three emissivity features in Ceres which may complicate the traditional model extrapolation to the far-infrared from contemporaneous ground-based N-band photometry that is used to support calibration of, for example, ISO-PHOT. While identification of specific materials that cause these features is not made, we discuss families of minerals that may be responsible

    Geochronology and Tectonic Significance of Middle Proterozoic Granitic Orthogneiss, North Qaidam HP/UHP Terrane, Western China

    Get PDF
    Amphibolite-facies para- and orthogneisses near Dulan, in the southeast part of the North Qaidam terrane, enclose minor ultra-high pressure (UHP) eclogite and peridotite. Field relations and coesite inclusions in zircons from paragneiss suggest that felsic, mafic, and ultramafic rocks all experienced UHP metamorphism and a common amphibolite-facies retrogression. Ion microprobe U–Pb and REE analyses of zircons from two granitic orthogneisses indicate magmatic crystallization at 927 ± Ma and 921 ± 7 Ma. Zircon rims in one of these samples yield younger ages (397–618 Ma) compatible with partial zircon recrystallization during in-situ Ordovician-Silurian eclogite-facies metamorphism previously determined from eclogite and paragneiss in this area. The similarity between a 2496 ± 18 Ma xenocrystic core and 2.4–2.5 Ga zircon cores in the surrounding paragneiss suggests that the granites intruded the sediments or that the granite is a melt of the older basement which supplied detritus to the sediments. The magmatic ages of the granitic orthogneisses are similar to 920–930 Ma ages of (meta)granitoids described further northwest in the North Qaidam terrane and its correlative west of the Altyn Tagh fault, suggesting that these areas formed a coherent block prior to widespread Mid Proterozoic granitic magmatism. Included here is the post-print copy of this article. The final publication is available at Springer via http://dx.doi.org/10.1007/s00710-006-0149-1

    Dust Processing and Grain Growth in Protoplanetary Disks in the Taurus-Auriga Star-Forming Region

    Full text link
    Mid-infrared spectra of 65 T Tauri stars (TTS) taken with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope are modeled using dust at two temperatures to probe the radial variation in dust composition in the uppermost layers of protoplanetary disks. Most spectra indicating crystalline silicates require Mg-rich minerals and silica, but a few suggest otherwise. Spectra indicating abundant enstatite at higher temperatures also require crystalline silicates at temperatures lower than those required for spectra showing high abundance of other crystalline silicates. A few spectra show 10 micron complexes of very small equivalent width. They are fit well using abundant crystalline silicates but very few large grains, inconsistent with the expectation that low peak-to-continuum ratio of the 10 micron complex always indicates grain growth. Most spectra in our sample are fit well without using the opacities of large crystalline silicate grains. If large grains grow by agglomeration of submicron grains of all dust types, the amorphous silicate components of these aggregates must typically be more abundant than the crystalline silicate components. Crystalline silicate abundances correlate positively with other such abundances, suggesting that crystalline silicates are processed directly from amorphous silicates and that neither forsterite, enstatite, nor silica are intermediate steps when producing either of the other two. Disks with more dust settling typically have greater crystalline abundances. Large-grain abundance is somewhat correlated with greater settling of disks. The lack of strong correlation is interpreted to mean that settling of large grains is sensitive to individual disk properties. Lower-mass stars have higher abundances of large grains in their inner regions.Comment: 84 pages, 27 figures, submitted to the Astrophysical Journal on 7 November, 200
    • …
    corecore