671 research outputs found

    Multivariate Analysis, Retrieval, and Storage System (MARS). Volume 6: MARS System - A Sample Problem (Gross Weight of Subsonic Transports)

    Get PDF
    The Mars system is a tool for rapid prediction of aircraft or engine characteristics based on correlation-regression analysis of past designs stored in the data bases. An example of output obtained from the MARS system, which involves derivation of an expression for gross weight of subsonic transport aircraft in terms of nine independent variables is given. The need is illustrated for careful selection of correlation variables and for continual review of the resulting estimation equations. For Vol. 1, see N76-10089

    Multivariate Analysis, Retrieval, and Storage System (MARS). Volume 1: MARS System and Analysis Techniques

    Get PDF
    A method for rapidly examining the probable applicability of weight estimating formulae to a specific aerospace vehicle design is presented. The Multivariate Analysis Retrieval and Storage System (MARS) is comprised of three computer programs which sequentially operate on the weight and geometry characteristics of past aerospace vehicles designs. Weight and geometric characteristics are stored in a set of data bases which are fully computerized. Additional data bases are readily added to the MARS system and/or the existing data bases may be easily expanded to include additional vehicles or vehicle characteristics

    Multivariate Analysis, Retrieval, and Storage System (MARS). Volume 4: Turbojet and Turbofan Data Base (By Engine)

    Get PDF
    A partial listing of turbojet and turbofan engine specifications data, as provided by the MARS (Multivariable Data Analysis, Retrieval, and Storage) system, was given for a number of engines

    Highly heterogenous humoral immune response in Lyme disease patients revealed by broad machine learning-assisted antibody binding profiling with random peptide arrays

    Get PDF
    IntroductionLyme disease (LD), a rapidly growing public health problem in the US, represents a formidable challenge due to the lack of detailed understanding about how the human immune system responds to its pathogen, the Borrelia burgdorferi bacterium. Despite significant advances in gaining deeper insight into mechanisms the pathogen uses to evade immune response, substantial gaps remain. As a result, molecular tools for the disease diagnosis are lacking with the currently available tests showing poor performance. High interpersonal variability in immune response combined with the ability of the pathogen to use a number of immune evasive tactics have been implicated as underlying factors for the limited test performance.MethodsThis study was designed to perform a broad profiling of the entire repertoire of circulating antibodies in human sera at the single-individual level using planar arrays of short linear peptides with random sequences. The peptides sample sparsely, but uniformly the entire combinatorial sequence space of the same length peptides for profiling the humoral immune response to a B.burg. infection and compare them with other diseases with etiology similar to LD and healthy controls.ResultsThe study revealed substantial variability in antibody binding profiles between individual LD patients even to the same antigen (VlsE protein) and strong similarity between individuals diagnosed with Lyme disease and healthy controls from the areas endemic to LD suggesting a high prevalence of seropositivity in endemic healthy control.DiscussionThis work demonstrates the utility of the approach as a valuable analytical tool for agnostic profiling of humoral immune response to a pathogen

    Influence of extended dynamics on phase transitions in a driven lattice gas

    Full text link
    Monte Carlo simulations and dynamical mean-field approximations are performed to study the phase transition in a driven lattice gas with nearest-neighbor exclusion on a square lattice. A slight extension of the microscopic dynamics with allowing the next-nearest-neighbor hops results in dramatic changes. Instead of the phase separation into high- and low-density regions in the stationary state the system exhibits a continuous transition belonging to the Ising universality class for any driving. The relevant features of phase diagram are reproduced by an improved mean-field analysis.Comment: 3 pages, 3 figure

    Ipl1/aurora kinase suppresses S-CDK-driven spindle formation during prophase I to ensure chromosome integrity during meiosis

    Get PDF
    Cells coordinate spindle formation with DNA repair and morphological modifications to chromosomes prior to their segregation to prevent cell division with damaged chromosomes. Here we uncover a novel and unexpected role for Aurora kinase in preventing the formation of spindles by Clb5-CDK (S-CDK) during meiotic prophase I and when the DDR is active in budding yeast. This is critical since S-CDK is essential for replication during premeiotic S-phase as well as double-strand break induction that facilitates meiotic recombination and, ultimately, chromosome segregation. Furthermore, we find that depletion of Cdc5 polo kinase activity delays spindle formation in DDR-arrested cells and that ectopic expression of Cdc5 in prophase I enhances spindle formation, when Ipl1 is depleted. Our findings establish a new paradigm for Aurora kinase function in both negative and positive regulation of spindle dynamics

    Short- and Long-Term Biomarkers for Bacterial Robustness: A Framework for Quantifying Correlations between Cellular Indicators and Adaptive Behavior

    Get PDF
    The ability of microorganisms to adapt to changing environments challenges the prediction of their history-dependent behavior. Cellular biomarkers that are quantitatively correlated to stress adaptive behavior will facilitate our ability to predict the impact of these adaptive traits. Here, we present a framework for identifying cellular biomarkers for mild stress induced enhanced microbial robustness towards lethal stresses. Several candidate-biomarkers were selected by comparing the genome-wide transcriptome profiles of our model-organism Bacillus cereus upon exposure to four mild stress conditions (mild heat, acid, salt and oxidative stress). These candidate-biomarkers—a transcriptional regulator (activating general stress responses), enzymes (removing reactive oxygen species), and chaperones and proteases (maintaining protein quality)—were quantitatively determined at transcript, protein and/or activity level upon exposure to mild heat, acid, salt and oxidative stress for various time intervals. Both unstressed and mild stress treated cells were also exposed to lethal stress conditions (severe heat, acid and oxidative stress) to quantify the robustness advantage provided by mild stress pretreatment. To evaluate whether the candidate-biomarkers could predict the robustness enhancement towards lethal stress elicited by mild stress pretreatment, the biomarker responses upon mild stress treatment were correlated to mild stress induced robustness towards lethal stress. Both short- and long-term biomarkers could be identified of which their induction levels were correlated to mild stress induced enhanced robustness towards lethal heat, acid and/or oxidative stress, respectively, and are therefore predictive cellular indicators for mild stress induced enhanced robustness. The identified biomarkers are among the most consistently induced cellular components in stress responses and ubiquitous in biology, supporting extrapolation to other microorganisms than B. cereus. Our quantitative, systematic approach provides a framework to search for these biomarkers and to evaluate their predictive quality in order to select promising biomarkers that can serve to early detect and predict adaptive traits

    RNA-Seq Analysis Reveals Different Dynamics of Differentiation of Human Dermis- and Adipose-Derived Stromal Stem Cells

    Get PDF
    Tissue regeneration and recovery in the adult body depends on self-renewal and differentiation of stem and progenitor cells. Mesenchymal stem cells (MSCs) that have the ability to differentiate into various cell types, have been isolated from the stromal fraction of virtually all tissues. However, little is known about the true identity of MSCs. MSC populations exhibit great tissue-, location- and patient-specific variation in gene expression and are heterogeneous in cell composition.Our aim was to analyze the dynamics of differentiation of two closely related stromal cell types, adipose tissue-derived MSCs (AdMSCs) and dermal fibroblasts (FBs) along adipogenic, osteogenic and chondrogenic lineages using multiplex RNA-seq technology. We found that undifferentiated donor-matched AdMSCs and FBs are distinct populations that stay different upon differentiation into adipocytes, osteoblasts and chondrocytes. The changes in lineage-specific gene expression occur early in differentiation and persist over time in both AdMSCs and FBs. Further, AdMSCs and FBs exhibit similar dynamics of adipogenic and osteogenic differentiation but different dynamics of chondrogenic differentiation.Our findings suggest that stromal stem cells including AdMSCs and dermal FBs exploit different molecular mechanisms of differentiation to reach a common cell fate. The early mechanisms of differentiation are lineage-specific and are similar for adipogenic and osteogenic differentiation but are distinct for chondrogenic differentiation between AdMSCs and FBs
    • …
    corecore