195 research outputs found

    SweetSpot: Near-Infrared Observations of Thirteen Type Ia Supernovae from a New NOAO Survey Probing the Nearby Smooth Hubble Flow

    Full text link
    We present 13 Type Ia supernovae (SNe Ia) observed in the restframe near-infrared (NIR) from 0.02 < z < 0.09 with the WIYN High-resolution Infrared Camera (WHIRC) on the WIYN 3.5-m telescope. With only 1-3 points per light curve and a prior on the time of maximum from the spectrum used to type the object we measure an H-band dispersion of spectroscopically normal SNe Ia of 0.164 mag. These observations continue to demonstrate the improved standard brightness of SNe Ia in H-band even with limited data. Our sample includes two SNe Ia at z ~ 0.09, which represent the most distant restframe NIR H-band observations published to date. This modest sample of 13 NIR SNe Ia represent the pilot sample for "SweetSpot" - a three-year NOAO Survey program that will observe 144 SNe Ia in the smooth Hubble flow. By the end of the survey we will have measured the relative distance to a redshift of z ~ 0.05 to 1%. Nearby Type Ia supernova (SN Ia) observations such as these will test the standard nature of SNe Ia in the restframe NIR, allow insight into the nature of dust, and provide a critical anchor for future cosmological SN Ia surveys at higher redshift.Comment: 36 pages, 8 figures, Submitted to Ap

    Early and Late-Time Observations of SN 2008ha: Additional Constraints for the Progenitor and Explosion

    Full text link
    We present a new maximum-light optical spectrum of the the extremely low luminosity and exceptionally low energy Type Ia supernova (SN Ia) 2008ha, obtained one week before the earliest published spectrum. Previous observations of SN 2008ha were unable to distinguish between a massive star and white dwarf origin for the SN. The new maximum-light spectrum, obtained one week before the earliest previously published spectrum, unambiguously shows features corresponding to intermediate mass elements, including silicon, sulfur, and carbon. Although strong silicon features are seen in some core-collapse SNe, sulfur features, which are a signature of carbon/oxygen burning, have always been observed to be weak in such events. It is therefore likely that SN 2008ha was the result of a thermonuclear explosion of a carbon-oxygen white dwarf. Carbon features at maximum light show that unburned material is present to significant depths in the SN ejecta, strengthening the case that SN 2008ha was a failed deflagration. We also present late-time imaging and spectroscopy that are consistent with this scenario.Comment: ApJL, accepted. 5 pages, 3 figure

    Type Ia Supernova Light Curve Inference: Hierarchical Bayesian Analysis in the Near Infrared

    Full text link
    We present a comprehensive statistical analysis of the properties of Type Ia SN light curves in the near infrared using recent data from PAIRITEL and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction and intrinsic variations, for coherent statistical inference. SN Ia light curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR dataset. The logical structure of the hierarchical model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient MCMC algorithm exploiting the conditional structure using Gibbs sampling. We apply this framework to the JHK_s SN Ia light curve data. A new light curve model captures the observed J-band light curve shape variations. The intrinsic variances in peak absolute magnitudes are: sigma(M_J) = 0.17 +/- 0.03, sigma(M_H) = 0.11 +/- 0.03, and sigma(M_Ks) = 0.19 +/- 0.04. We describe the first quantitative evidence for correlations between the NIR absolute magnitudes and J-band light curve shapes, and demonstrate their utility for distance estimation. The average residual in the Hubble diagram for the training set SN at cz > 2000 km/s is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light curve inference tests the sensitivity of the model fit to the finite sample and estimates the prediction error at 0.15 mag. These results demonstrate that SN Ia NIR light curves are as effective as optical light curves, and, because they are less vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.Comment: 24 pages, 15 figures, 4 tables. Accepted for publication in ApJ. Corrected typo, added references, minor edit

    Improving the LSST dithering pattern and cadence for dark energy studies

    Full text link
    The Large Synoptic Survey Telescope (LSST) will explore the entire southern sky over 10 years starting in 2022 with unprecedented depth and time sampling in six filters, ugrizyugrizy. Artificial power on the scale of the 3.5 deg LSST field-of-view will contaminate measurements of baryonic acoustic oscillations (BAO), which fall at the same angular scale at redshift z1z \sim 1. Using the HEALPix framework, we demonstrate the impact of an "un-dithered" survey, in which 17%17\% of each LSST field-of-view is overlapped by neighboring observations, generating a honeycomb pattern of strongly varying survey depth and significant artificial power on BAO angular scales. We find that adopting large dithers (i.e., telescope pointing offsets) of amplitude close to the LSST field-of-view radius reduces artificial structure in the galaxy distribution by a factor of \sim10. We propose an observing strategy utilizing large dithers within the main survey and minimal dithers for the LSST Deep Drilling Fields. We show that applying various magnitude cutoffs can further increase survey uniformity. We find that a magnitude cut of r<27.3r < 27.3 removes significant spurious power from the angular power spectrum with a minimal reduction in the total number of observed galaxies over the ten-year LSST run. We also determine the effectiveness of the observing strategy for Type Ia SNe and predict that the main survey will contribute \sim100,000 Type Ia SNe. We propose a concentrated survey where LSST observes one-third of its main survey area each year, increasing the number of main survey Type Ia SNe by a factor of \sim1.5, while still enabling the successful pursuit of other science drivers.Comment: 9 pages, 6 figures, published in SPIE proceedings; corrected typo in equation

    The NN2 Flux Difference Method for Constructing Variable Object Light Curves

    Full text link
    We present a new method for optimally extracting point-source time variability information from a series of images. Differential photometry is generally best accomplished by subtracting two images separated in time, since this removes all constant objects in the field. By removing background sources such as the host galaxies of supernovae, such subtractions make possible the measurement of the proper flux of point-source objects superimposed on extended sources. In traditional difference photometry, a single image is designated as the ``template'' image and subtracted from all other observations. This procedure does not take all the available information into account and for sub-optimal template images may produce poor results. Given N total observations of an object, we show how to obtain an estimate of the vector of fluxes from the individual images using the antisymmetric matrix of flux differences formed from the N(N-1)/2 distinct possible subtractions and provide a prescription for estimating the associated uncertainties. We then demonstrate how this method improves results over the standard procedure of designating one image as a ``template'' and differencing against only that image.Comment: Accepted to AJ. To be published in November 2005 issue. 16 page, 2 figures, 2 tables. Source code available at http://www.ctio.noao.edu/essence/nn2

    Lightcurves of Type Ia Supernovae from Near the Time of Explosion

    Get PDF
    We present a set of 11 type Ia supernova (SN Ia) lightcurves with dense, pre-maximum sampling. These supernovae (SNe), in galaxies behind the Large Magellanic Cloud (LMC), were discovered by the SuperMACHO survey. The SNe span a redshift range of z = 0.11 - 0.35. Our lightcurves contain some of the earliest pre-maximum observations of SNe Ia to date. We also give a functional model that describes the SN Ia lightcurve shape (in our VR-band). Our function uses the "expanding fireball" model of Goldhaber et al. (1998) to describe the rising lightcurve immediately after explosion but constrains it to smoothly join the remainder of the lightcurve. We fit this model to a composite observed VR-band lightcurve of three SNe between redshifts of 0.135 to 0.165. These SNe have not been K-corrected or adjusted to account for reddening. In this redshift range, the observed VR-band most closely matches the rest frame V-band. Using the best fit to our functional description of the lightcurve, we find the time between explosion and observed VR-band maximum to be 17.6+-1.3(stat)+-0.07(sys) rest-frame days for a SN Ia with a VR-band Delta m_{-10} of 0.52mag. For the redshifts sampled, the observed VR-band time-of-maximum brightness should be the same as the rest-frame V-band maximum to within 1.1 rest-frame days.Comment: 35 pages, 18 figures, 15 tables; Higher quality PDF available at http://ctiokw.ctio.noao.edu/~sm/sm/SNrise/index.html; AJ accepte

    CfAIR2: Near Infrared Light Curves of 94 Type Ia Supernovae

    Get PDF
    CfAIR2 is a large homogeneously reduced set of near-infrared (NIR) light curves for Type Ia supernovae (SN Ia) obtained with the 1.3m Peters Automated InfraRed Imaging TELescope (PAIRITEL). This data set includes 4607 measurements of 94 SN Ia and 4 additional SN Iax observed from 2005-2011 at the Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona. CfAIR2 includes JHKs photometric measurements for 88 normal and 6 spectroscopically peculiar SN Ia in the nearby universe, with a median redshift of z~0.021 for the normal SN Ia. CfAIR2 data span the range from -13 days to +127 days from B-band maximum. More than half of the light curves begin before the time of maximum and the coverage typically contains ~13-18 epochs of observation, depending on the filter. We present extensive tests that verify the fidelity of the CfAIR2 data pipeline, including comparison to the excellent data of the Carnegie Supernova Project. CfAIR2 contributes to a firm local anchor for supernova cosmology studies in the NIR. Because SN Ia are more nearly standard candles in the NIR and are less vulnerable to the vexing problems of extinction by dust, CfAIR2 will help the supernova cosmology community develop more precise and accurate extragalactic distance probes to improve our knowledge of cosmological parameters, including dark energy and its potential time variation.Comment: 31 pages, 15 figures, 10 tables. Accepted to ApJS. v2 modified to more closely match journal versio
    corecore