12 research outputs found

    High and low levels of an NTRK2-driven genetic profile affect motor- and cognition-associated frontal gray matter in prodromal Huntington’s disease

    Get PDF
    This study assessed how BDNF (brain-derived neurotrophic factor) and other genes involved in its signaling influence brain structure and clinical functioning in pre-diagnosis Huntington’s disease (HD). Parallel independent component analysis (pICA), a multivariate method for identifying correlated patterns in multimodal datasets, was applied to gray matter concentration (GMC) and genomic data from a sizeable PREDICT-HD prodromal cohort (N = 715). pICA identified a genetic component highlighting NTRK2, which encodes BDNF’s TrkB receptor, that correlated with a GMC component including supplementary motor, precentral/premotor cortex, and other frontal areas (p < 0.001); this association appeared to be driven by participants with high or low levels of the genetic profile. The frontal GMC profile correlated with cognitive and motor variables (Trail Making Test A (p = 0.03); Stroop Color (p = 0.017); Stroop Interference (p = 0.04); Symbol Digit Modalities Test (p = 0.031); Total Motor Score (p = 0.01)). A top-weighted NTRK2 variant (rs2277193) was protectively associated with Trail Making Test B (p = 0.007); greater minor allele numbers were linked to a better performance. These results support the idea of a protective role of NTRK2 in prodromal HD, particularly in individuals with certain genotypes, and suggest that this gene may influence the preservation of frontal gray matter that is important for clinical functioning.This project was supported by 1U01NS082074 (V.C. and J.T., co-principal investigators) from the National Institutes of Health, National Institute of Neurological Disorders and Stroke. The PREDICT-HD study was supported by NIH/NINDS grant 5R01NS040068 awarded to J.P.; CHDI Foundation, Inc., A3917 and 6266 awarded to J.P.; Cognitive and Functional Brain Changes in Preclinical Huntington’s Disease (HD) 5R01NS054893 awarded to J.P.; 4D Shape Analysis for Modeling Spatiotemporal Change Trajectories in Huntington’s 1U01NS082086; Functional Connectivity in Premanifest Huntington’s Disease 1U01NS082083; and Basal Ganglia Shape Analysis and Circuitry in Huntington’s Disease 1U01NS082085 awarded to Christopher A. Ross

    Comparative Genome Analysis of Filamentous Fungi Reveals Gene Family Expansions Associated with Fungal Pathogenesis

    Get PDF
    Fungi and oomycetes are the causal agents of many of the most serious diseases of plants. Here we report a detailed comparative analysis of the genome sequences of thirty-six species of fungi and oomycetes, including seven plant pathogenic species, that aims to explore the common genetic features associated with plant disease-causing species. The predicted translational products of each genome have been clustered into groups of potential orthologues using Markov Chain Clustering and the data integrated into the e-Fungi object-oriented data warehouse (http://www.e-fungi.org.uk/). Analysis of the species distribution of members of these clusters has identified proteins that are specific to filamentous fungal species and a group of proteins found only in plant pathogens. By comparing the gene inventories of filamentous, ascomycetous phytopathogenic and free-living species of fungi, we have identified a set of gene families that appear to have expanded during the evolution of phytopathogens and may therefore serve important roles in plant disease. We have also characterised the predicted set of secreted proteins encoded by each genome and identified a set of protein families which are significantly over-represented in the secretomes of plant pathogenic fungi, including putative effector proteins that might perturb host cell biology during plant infection. The results demonstrate the potential of comparative genome analysis for exploring the evolution of eukaryotic microbial pathogenesis

    Clinical and biomarker changes in premanifest Huntington disease show trial feasibility: A decade of the PREDICT-HD study

    Get PDF
    There is growing consensus that intervention and treatment of Huntington disease (HD) should occur at the earliest stage possible. Various early-intervention methods for this fatal neurodegenerative disease have been identified, but preventive clinical trials for HD are limited by a lack of knowledge of the natural history of the disease and a dearth of appropriate outcome measures. Objectives of the current study are to document the natural history of premanifest HD progression in the largest cohort ever studied and to develop a battery of imaging and clinical markers of premanifest HD progression that can be used as outcome measures in preventive clinical trials. Neurobiological predictors of Huntington’s disease is a 32-site, international, observational study of premanifest HD, with annual examination of 1013 participants with premanifest HD and 301 gene-expansion negative controls between 2001 and 2012. Findings document 39 variables representing imaging, motor, cognitive, functional, and psychiatric domains, showing different rates of decline between premanifest HD and controls. Required sample size and models of premanifest HD are presented to inform future design of clinical and preclinical research. Preventive clinical trials in premanifest HD with participants who have a medium or high probability of motor onset are calculated to be as resource-effective as those conducted in diagnosed HD and could interrupt disease 7–12years earlier. Methods and measures for preventive clinical trials in premanifest HD more than a dozen years from motor onset are also feasible. These findings represent the most thorough documentation of a clinical battery for experimental therapeutics in stages of premanifest HD, the time period for which effective intervention may provide the most positive possible outcome for patients and their families affected by this devastating disease

    Diversity of Nitrogen Metabolism Among Yeast Species: Regulatory and Evolutionary Aspects

    No full text

    Regional atrophy associated with cognitive and motor function in prodromal Huntington disease.

    No full text
    corecore