741 research outputs found

    Distributed Generation and Resilience in Power Grids

    Full text link
    We study the effects of the allocation of distributed generation on the resilience of power grids. We find that an unconstrained allocation and growth of the distributed generation can drive a power grid beyond its design parameters. In order to overcome such a problem, we propose a topological algorithm derived from the field of Complex Networks to allocate distributed generation sources in an existing power grid.Comment: proceedings of Critis 2012 http://critis12.hig.no

    Calculations of parity nonconserving s-d transitions in Cs, Fr, Ba II, and Ra II

    Get PDF
    We have performed ab initio mixed-states and sum-over-states calculations of parity nonconserving (PNC) electric dipole (E1) transition amplitudes between s-d electron states of Cs, Fr, Ba II, and Ra II. For the lower states of these atoms we have also calculated energies, E1 transition amplitudes, and lifetimes. We have shown that PNC E1 transition amplitudes between s-d states can be calculated to high accuracy. Contrary to the Cs 6s-7s transition, in these transitions there are no strong cancelations between different terms in the sum-over-states approach. In fact, there is one dominating term which deviates from the sum by less than 20%. This term corresponds to an s-p_{1/2} weak matrix element, which can be calculated to better than 1%, and a p_{1/2}-d_{3/2} E1 transition amplitude, which can be measured. Also, the s-d amplitudes are about four times larger than the corresponding s-s transitions. We have shown that by using a hybrid mixed-states/sum-over-states approach the accuracy of the calculations of PNC s-d amplitudes could compete with that of Cs 6s-7s if p_{1/2}-d_{3/2} E1 amplitudes are measured to high accuracy.Comment: 15 pages, 8 figures, submitted to Phys. Rev.

    Risk of hospital admission with coronavirus disease 2019 in healthcare workers and their households: nationwide linkage cohort study

    Get PDF
    Objective: Many healthcare staff work in high-risk settings for contracting and transmitting Severe Acute Respiratory Syndrome Coronavirus 2. Their risk of hospitalisation for coronavirus disease 2019 (COVID-19), and that of their households, is poorly understood. Design and settings and participants: During the peak period for COVID-19 infection in Scotland (1st March 2020 to 6th June 2020) we conducted a national record linkage study to compare the risk of COVID-19 hospitalisation among healthcare workers (age: 18-65 years), their households and other members of the general population. Main outcome: Hospitalisation with COVID-19 Results: The cohort comprised 158,445 healthcare workers, the majority being patient facing (90,733 / 158,445; 57.3%), and 229,905 household members. Of all COVID-19 hospitalisations in the working age population (18-65-year-old), 17.2% (360 / 2,097) were in healthcare workers or their households. Adjusting for age, sex, ethnicity, socio-economic deprivation and comorbidity, the risk of COVID-19 hospitalisation in non-patient facing healthcare workers and their households was similar to the risk in the general population (hazards ratio [HR] 0.81; 95%CI 0.52-1.26 and 0.86; 95%CI 0.49-1.51 respectively). In models adjusting for the same covariates however, patient facing healthcare workers, compared to non-patient facing healthcare workers, were at higher risk (HR 3.30; 95%CI 2.13-5.13); so too were household members of patient facing healthcare workers (HR 1.79; 95%CI 1.10-2.91). On sub-dividing patient-facing healthcare workers into those who worked in front-door, intensive care and non-intensive care aerosol generating settings and other, those in front door roles were at higher risk (HR 2.09; 95%CI 1.49-2.94). For most patient facing healthcare workers and their households, the estimated absolute risk of COVID-19 hospitalisation was less than 0.5% but was 1% and above in older men with comorbidity. Conclusions: Healthcare workers and their households contribute a sixth of hospitalised COVID-19 cases. Whilst the absolute risk of hospitalisation was low overall, patient facing healthcare workers and their households had 3- and 2-fold increased risks of COVID-19 hospitalisation

    Particle interactions with single or multiple 3D solar reconnecting current sheets

    Full text link
    The acceleration of charged particles (electrons and protons) in flaring solar active regions is analyzed by numerical experiments. The acceleration is modelled as a stochastic process taking place by the interaction of the particles with local magnetic reconnection sites via multiple steps. Two types of local reconnecting topologies are studied: the Harris-type and the X-point. A formula for the maximum kinetic energy gain in a Harris-type current sheet, found in a previous work of ours, fits well the numerical data for a single step of the process. A generalization is then given approximating the kinetic energy gain through an X-point. In the case of the multiple step process, in both topologies the particles' kinetic energy distribution is found to acquire a practically invariant form after a small number of steps. This tendency is interpreted theoretically. Other characteristics of the acceleration process are given, such as the mean acceleration time and the pitch angle distributions of the particles.Comment: 18 pages, 9 figures, Solar Physics, in pres

    Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab

    Full text link
    We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies; results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.Comment: 22 pages, 16 figure

    Tensor Correlations Measured in 3He(e,e'pp)n

    Full text link
    We have measured the 3He(e,e'pp)n reaction at an incident energy of 4.7 GeV over a wide kinematic range. We identified spectator correlated pp and pn nucleon pairs using kinematic cuts and measured their relative and total momentum distributions. This is the first measurement of the ratio of pp to pn pairs as a function of pair total momentum, ptotp_{tot}. For pair relative momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low ptotp_{tot} and rises to approximately 0.5 at large ptotp_{tot}. This shows the dominance of tensor over central correlations at this relative momentum.Comment: 4 pages, 4 figures, submitted to PR

    Electromagnetic Probes

    Full text link
    A review is presented of dilepton and real photon measurements in relativistic heavy ion collisions over a very broad energy range from the low energies of the BEVALAC up to the highest energies available at RHIC. The dileptons cover the invariant mass range \mll = 0 - 2.5 GeV/c2^2, i.e. the continuum at low and intermediate masses and the light vector mesons, ρ,ω,ϕ\rho, \omega, \phi. The review includes also measurements of the light vector mesons in elementary reactions.Comment: To be published in Landolt-Boernstein Volume 1-23A; 40 pages, 24 figures. Final version updated with small changes to the text, updated references and updated figure

    Deep exclusive π+\pi^+ electroproduction off the proton at CLAS

    Get PDF
    The exclusive electroproduction of π+\pi^+ above the resonance region was studied using the CEBAF\rm{CEBAF} Large Acceptance Spectrometer (CLAS\rm{CLAS}) at Jefferson Laboratory by scattering a 6 GeV continuous electron beam off a hydrogen target. The large acceptance and good resolution of CLAS\rm{CLAS}, together with the high luminosity, allowed us to measure the cross section for the γ∗p→nπ+\gamma^* p \to n \pi^+ process in 140 (Q2Q^2, xBx_B, tt) bins: 0.16<xB<0.580.16<x_B<0.58, 1.6 GeV2<^2<Q2Q^2<4.5<4.5 GeV2^2 and 0.1 GeV2<^2<−t-t<5.3<5.3 GeV2^2. For most bins, the statistical accuracy is on the order of a few percent. Differential cross sections are compared to two theoretical models, based either on hadronic (Regge phenomenology) or on partonic (handbag diagram) degrees of freedom. Both can describe the gross features of the data reasonably well, but differ strongly in their ingredients. If the handbag approach can be validated in this kinematical region, our data contain the interesting potential to experimentally access transversity Generalized Parton Distributions.Comment: 18pages, 21figures,2table
    • 

    corecore