664 research outputs found
Accounting estimates as cost inputs to logistics models
Production Function;econometrics
Reframing nutritional microbiota studies to reflect an inherent metabolic flexibility of the human gut: A narrative review focusing on high-fat diets
There is a broad consensus in nutritional-microbiota research that high-fat (HF) diets are harmful to human health, at least in part through their modulation of the gut microbiota. However, various studies also support the inherent flexibility of the human gut and our microbiota’s ability to adapt to a variety of food sources, suggesting a more nuanced picture. In this article, we first discuss some problems fac-ing basic translational research and provide a different framework for thinking about diet and gut health in terms of metabolic flexibility. We then offer evidence that well-formulated HF diets, such as ketogenic diets, may provide healthful alternative fuel sources for the human gut. We place this in the context of cancer research, where this concern over HF diets is also expressed, and consider various potential objections concerning the effects of lipopolysaccharides, trimethylamine-N-oxide, and secondary bile acids on human gut health. We end by providing some gen-eral suggestions for how to improve research and clinical practice with respect to the gut microbiota when considering the framework of metabolic flexibility.Immunity, DEvelopment and Microbiota: Understanding the Continuous Construction of Biological Identit
Recommended from our members
Predictive calculations to assess the long-term effect of cementitious materials on the pH and solubility of uranium(VI) in a shallow land disposal environment
One proposed method of low-level radioactive waste (LLW) disposal is to mix the radioactive waste streams with cement, place the mixture in steel barrels, and dispose of the barrels in near-surface unsaturated sediments. Cement or concrete is frequently used in burial grounds, because cement porewaters are buffered at high pH values and lanthanides and actinides; are very insoluble in highly alkaline environments. Therefore, leaching of these contaminants from the combined cement/low-level radioactive waste streams will at least initially be retarded. The calculations performed in this study demonstrate that the pH of cement porewaters will be maintained at a value greater than 10 for 10,000 years under Hanford specific hydrogeochemical conditions. Ten thousand years is the period generally studied in longterm performance assessments per regulatory guidance. The concentrations of dissolved hexavalent uranium [U(VI)], the valence form of dissolved U usually present in oxidizing surface and groundwaters, are also constrained by the high pH and predicted solution compositions over the 10,000-year period, which is favorable from a long-term performance perspective
Updating Outdated Predictive Accident Models
Reliable predictive accident models (PAMs) (also referred to as safety performance functions (SPFs)) are essential to design and maintain safe road networks however, ongoing changes in road and vehicle design coupled with road safety initiatives, mean that these models can quickly become dated. Unfortunately, because the fitting of sophisticated PAMs including a wide range of explanatory variables is not a trivial task, available models tend to be based on data collected many years ago and seem unlikely to give reliable estimates of current accidents. Large, expensive studies to produce new models are likely to be, at best, only a temporary solution. This paper thus seeks to develop a practical and efficient methodology to allow currently available PAMs to be updated to give unbiased estimates of accident frequencies at any point in time. Two principal issues are examined: the extent to which the temporal transferability of predictive accident models varies with model complexity; and the practicality and efficiency of two alternative updating strategies. The models used to illustrate these issues are the suites of models developed for rural dual and single carriageway roads in the UK. These are widely used in several software packages in spite of being based on data collected during the 1980s and early 1990s. It was found that increased model complexity by no means ensures better temporal transferability and that calibration of the models using a scale factor can be a practical alternative to fitting new models
Downscaling Changing Coastlines in a Changing Climate: The Hybrid Approach
Shifts in the frequency of typical meteorological patterns in an ocean basin, over interannual to decadal time scales, cause shifts in the patterns of wave generation. Therefore, ocean basin-scale climate shifts produce shifts in the wave climates affecting the coastlines of the basin. We present a hybrid methodology for downscaling observed (or predicted) climate shifts into local nearshore wave climates and then into the associated coastline responses. A series of statistical analyses translate observed (or predicted) distributions of meteorological states into the deep water wave climate affecting a coastal region and dynamical modeling combined with statistical analyses transform the deep water wave climate into the nearshore wave climate affecting a particular coastline. Finally, dynamical modeling of coastline evolution hindcasts (or predicts) how coastline shapes respond to climate shifts. As a case study, we downscale from meteorological hindcast in the North Atlantic basin since 1870 to the responses of the shape of the coast of the Carolinas, USA. We test the hindcasts using shoreline change rates calculated from historical shorelines, because shifts in coastline shape equate to changes in the alongshore pattern of shoreline change rates from one historical period to another. Although limited by the availability of historical shorelines (and complicated by historical inlet openings), the observations are consistent with the predicted signal of ocean basin-scale climate change. The hybrid downscaling methodology, applied to the output of global climate models, can be used to help forecast future patterns of shoreline change related to future climate change scenarios
The Weak Charge of the Proton and New Physics
We address the physics implications of a precision determination of the weak
charge of the proton, QWP, from a parity violating elastic electron proton
scattering experiment to be performed at the Jefferson Laboratory. We present
the Standard Model (SM) expression for QWP including one-loop radiative
corrections, and discuss in detail the theoretical uncertainties and missing
higher order QCD corrections. Owing to a fortuitous cancellation, the value of
QWP is suppressed in the SM, making it a unique place to look for physics
beyond the SM. Examples include extra neutral gauge bosons, supersymmetry, and
leptoquarks. We argue that a QWP measurement will provide an important
complement to both high energy collider experiments and other low energy
electroweak measurements. The anticipated experimental precision requires the
knowledge of the order alpha_s corrections to the pure electroweak box
contributions. We compute these contributions for QWP, as well as for the weak
charges of heavy elements as determined from atomic parity violation.Comment: 22 pages of LaTeX, 5 figure
Mapping the planet’s critical natural assets
Sustaining the organisms, ecosystems and processes that underpin human wellbeing is necessary to achieve sustainable development. Here we define critical natural assets as the natural and semi-natural ecosystems that provide 90% of the total current magnitude of 14 types of nature’s contributions to people (NCP), and we map the global locations of these critical natural assets at 2 km resolution. Critical natural assets for maintaining local-scale NCP (12 of the 14 NCP) account for 30% of total global land area and 24% of national territorial waters, while 44% of land area is required to also maintain two global-scale NCP (carbon storage and moisture recycling). These areas overlap substantially with cultural diversity (areas containing 96% of global languages) and biodiversity (covering area requirements for 73% of birds and 66% of mammals). At least 87% of the world’s population live in the areas benefitting from critical natural assets for local-scale NCP, while only 16% live on the lands containing these assets. Many of the NCP mapped here are left out of international agreements focused on conserving species or mitigating climate change, yet this analysis shows that explicitly prioritizing critical natural assets and the NCP they provide could simultaneously advance development, climate and conservation goals.We thank all the participants of two working groups hosted by Conservation International and the Natural Capital Project for their insights and intellectual contributions. For further advice or assistance, we thank A. Adams, K. Brandon, K. Brauman, A. Cramer, G. Daily, J. Fisher, R. Gould, L. Mandle, J. Montgomery, A. Rodewald, D. Rossiter, E. Selig, A. Vogl and T. M. Wright. The two working groups that provided the foundation for this analysis were funded by support from the Marcus and Marianne Wallenberg Foundation to the Natural Capital Project (R.C.-K. and R.P.S.) and the Betty and Gordon Moore to Conservation International (R.A.N. and P.M.C.)
Geomorphological context and formation history of Cloggs Cave: What was the cave like when people inhabited it?
New research undertaken at Cloggs Cave, in the foothills of the Australian Alps, employed an integrated geological-geomorphological-archaeological approach with manifold dating methods and fine resolution LiDAR 3D mapping. Long-standing questions about the site's chronostratigraphy (e.g. the exact relationship between basal megafaunal deposits and archaeological layers), sedimentation processes and geomorphic changes were resolved. The cave's formation history was reconstructed to understand its changing morphology and morphogenic processes, and to clarify how these processes shaped the cave's deposits. Key findings include the identification of: 1) the geomorphological processes that caused the lateral juxtaposition of 52,000 year-old megafaunal and later occupational layers; 2) the existence of one and possibly two (now-buried) palaeo-entrance(s) that enabled now-extinct megafauna and extant large fauna to enter the cave, most likely via a free-roaming passage rather than a pit drop; 3) morphological changes to the cave during the time of the Old People, including the timing of changes to the inclination of palaeo-surfaces; and 4) modifications to stalactites, crushing of calcite formations for the manufacture of powder, construction of a stone arrangement, and movement of large limestone blocks by the Old People. Ultimately, these findings demonstrate that to properly understand what Cloggs Cave was like when the Old People visited the site requires the construction of a narrative that spans some 400 million years and the development of an approach capable of integrating the many scales and processes (e.g. geological, geomorphological, archaeological) that configured to shape the site
- …