1,940 research outputs found

    Lipid Coated Gold Nanoparticle Cores: Synthesis and Characterization

    Get PDF
    Including environmental, industrial, and biomedical sciences, applications of gold nanoparticles are on the forefront of research in many areas. By altering the surface treatment of spherical gold nanoparticle cores, particularly those smaller than 100 nm (nanometers), one can influence their potential use in a number of ways. Lipid coated nanoparticles with specifically selected surface ligands can be used for multiple biomedical functions, including medical imaging, for use as colorimetric and plasmonic sensors within the body, and as cell or organelle specific targets for therapeutic drug delivery or cancer treatment. Here, spherical gold nanoparticles ranging in size from 8-40 nm (avg. diameter 23-48 nm) have been synthesized and coated with poly(allylamine hydrochloride) (PAH) and a mixed lipid solution of 1:1 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) and lysophosphatidylcholine (LPC), two of the four major types of lipids found in the human body. Characterization was performed using a NanoSight LM10HS particle sizer, and shows a gradual increase in size after each step in the coating process for nanoparticle cores ranging in size from 16-27 nm. The thickness of these purified and lipid coated nanoparticles was consistently 2-3 times that of the PAH coated sample it was layered onto, suggesting a successful, multi-layered coat that ranges in size based on the PAH coated core size. UV-Vis spectroscopy shows a slight red shift, indicating an increase in size and change in refractive index, which supports the presence of lipid coating on the PAH coated gold nanoparticle cores

    Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing

    Get PDF
    We present large-scale reproducible fabrication of multifunctional ultrasharp metallic structures on planar substrates with capabilities including magnetic field nanofocusing and plasmonic sensing. Objects with sharp tips such as wedges and pyramids made with noble metals have been extensively used for enhancing local electric fields via the lightning-rod effect or plasmonic nanofocusing. However, analogous nanofocusing of magnetic fields using sharp tips made with magnetic materials has not been widely realized. Reproducible fabrication of sharp tips with magnetic as well as noble metal layers on planar substrates can enable straightforward application of their material and shape-derived functionalities. We use a template-stripping method to produce plasmonic-shell-coated nickel wedge and pyramid arrays at the wafer-scale with tip radius of curvature close to 10 nm. We further explore the magnetic nanofocusing capabilities of these ultrasharp substrates, deriving analytical formulas and comparing the results with computer simulations. These structures exhibit nanoscale spatial control over the trapping of magnetic microbeads and nanoparticles in solution. Additionally, enhanced optical sensing of analytes by these plasmonic-shell-coated substrates is demonstrated using surface-enhanced Raman spectroscopy. These methods can guide the design and fabrication of novel devices with applications including nanoparticle manipulation, biosensing, and magnetoplasmonics

    SIX1 Oncoprotein as a Biomarker in a Model of Hormonal Carcinogenesis and in Human Endometrial Cancer

    Get PDF
    The oncofetal protein sine oculis-related homeobox 1 (SIX1) is a developmental transcription factor associated with carcinogenesis in several human cancer types, but has not been investigated in human endometrial cancer. In a model of hormonal carcinogenesis, mice neonatally exposed to the soy phytoestrogen genistein (GEN) or the synthetic estrogen diethylstilbestrol (DES) develop endometrial cancer as adults. Previously, we demonstrated that SIX1 becomes aberrantly expressed in the uteri of these mice. Here we used this mouse model to investigate the role of SIX1 expression in endometrial carcinoma development and used human tissue microarrays to explore the utility of SIX1 as a biomarker in human endometrial cancer. In mice neonatally exposed to GEN or DES, the Six1 transcript level increased dramatically over time in uteri at 6, 12, and 18 months of age and was associated with development of endometrial carcinoma. SIX1 protein localized within abnormal basal cells and all atypical hyperplastic and neoplastic lesions. These findings indicate that developmental estrogenic chemical exposure induces persistent endometrial SIX1 expression that is strongly associated with abnormal cell differentiation and cancer development. In human endometrial tissue specimens, SIX1 was not present in normal endometrium but was expressed in a subset of endometrial cancers in patients who were also more likely to have late-stage disease. These findings identify SIX1 as a disease biomarker in a model of hormonal carcinogenesis and suggest that SIX1 plays a role in endometrial cancer development in both mice and women

    HOIL1 regulates group 2 innate lymphoid cell numbers and type 2 inflammation in the small intestine

    Get PDF
    Patients with mutations in HOIL1 experience a complex immune disorder including intestinal inflammation. To investigate the role of HOIL1 in regulating intestinal inflammation, we employed a mouse model of partial HOIL1 deficiency. The ileum of HOIL1-deficient mice displayed features of type 2 inflammation including tuft cell and goblet cell hyperplasia, and elevated expression of Il13, Il5 and Il25 mRNA. Inflammation persisted in the absence of T and B cells, and bone marrow chimeric mice revealed a requirement for HOIL1 expression in radiation-resistant cells to regulate inflammation. Although disruption of IL-4 receptor alpha (IL4Rα) signaling on intestinal epithelial cells ameliorated tuft and goblet cell hyperplasia, expression of Il5 and Il13 mRNA remained elevated. KLRG

    SLUGBOT, an Aplysia-inspired Robotic Grasper for Studying Control

    Full text link
    Living systems can use a single periphery to perform a variety of tasks and adapt to a dynamic environment. This multifunctionality is achieved through the use of neural circuitry that adaptively controls the reconfigurable musculature. Current robotic systems struggle to flexibly adapt to unstructured environments. Through mimicry of the neuromechanical coupling seen in living organisms, robotic systems could potentially achieve greater autonomy. The tractable neuromechanics of the sea slug Aplysia californica’s\textit{Aplysia californica's} feeding apparatus, or buccal mass, make it an ideal candidate for applying neuromechanical principles to the control of a soft robot. In this work, a robotic grasper was designed to mimic specific morphology of the Aplysia\textit{Aplysia} feeding apparatus. These include the use of soft actuators akin to biological muscle, a deformable grasping surface, and a similar muscular architecture. A previously developed Boolean neural controller was then adapted for the control of this soft robotic system. The robot was capable of qualitatively replicating swallowing behavior by cyclically ingesting a plastic tube. The robot's normalized translational and rotational kinematics of the odontophore followed profiles observed in vivo\textit{in vivo} despite morphological differences. This brings Aplysia\textit{Aplysia}-inspired control in roboto\textit{in roboto} one step closer to multifunctional neural control schema in vivo\textit{in vivo} and in silico\textit{in silico}. Future additions may improve SLUGBOT's viability as a neuromechanical research platform.Comment: Submitted and accepted to Living Machines 2022 conferenc

    Inclusive b-hadron production cross section with muons in pp collisions at s√=7TeV

    Get PDF
    A measurement of the b-hadron production cross section in proton-proton collisions at s√=7TeVs=7TeV is presented. The dataset, corresponding to 85 nb−1, was recorded with the CMS experiment at the LHC using a low-threshold single-muon trigger. Events are selected by the presence of a muon with transverse momentum pμT>6GeVpTμ>6GeV with respect to the beam direction and pseudorapidity |η μ | < 2.1. The transverse momentum of the muon with respect to the closest jet discriminates events containing b hadrons from background. The inclusive b-hadron production cross section is presented as a function of muon transverse momentum and pseudorapidity. The measured total cross section in the kinematic acceptance is σ(pp → b + X → μ + X′) = 1.32 ± 0.01(stat) ± 0.30(syst) ± 0.15(lumi)μb

    Equipment management trial : final report

    Get PDF
    Executive Summary The Equipment Management (EM) trial was one of the practical initiatives conceived and implemented by members of The Application Home Initiative (TAHI) to demonstrate the feasibility of interoperability between white and brown goods, and other domestic equipment. The trial ran from October 2002 to June 2005, over which period it achieved its core objectives through the deployment in early 2005 of an integrated system in trials in 15 occupied homes. Prior to roll out into the field, the work was underpinned by soak testing, validation, laboratory experiments, case studies, user questionnaires, simulations and other research, conducted in a single demonstration home in Loughborough, as well as in Universities in the East Midlands and Scotland. Throughout its life, the trial faced significant membership changes, which had a far greater impact than the technical issues that were tackled. Two blue chip companies withdrew at the point of signing the collaborative agreement; another made a major change in strategic direction half way through and withdrew the major portion of its backing; another corporate left at this point, a second one later; one corporate was a late entrant; the technical leader made a boardroom decision not to do the engineering work that it had promised; one company went into liquidation; another went up for sale whilst others reorganised. The trial was conducted against this backdrop of continual commercial change. Despite this difficult operating environment, the trial met its objectives, although not entirely as envisaged initially – a tribute to the determination of the trial’s membership, the strength of its formal governance and management processes, and especially, the financial support of the dti. The equipment on trial featured a central heating/hot water boiler, washing machine, security system, gas alarm and utility meters, all connected to a home gateway, integrated functionally and presented to the users via a single interface. The trial met its principal objective to show that by connecting appliances to each other and to a support system, benefits in remote condition monitoring, maintenance, appliance & home controls optimisation and convenience to the customer & service supplier could be provided. This is one of two main reports that form the trial output (the other, the Multi Home Trial Report, is available to EM Trial members only as it contains commercially sensitive information). A supporting library of documents is also available and is held in the virtual office hosted by Loughborough University Centre for the Integrated Home Environment

    Equipment management trial : TAHI summary

    Get PDF
    The Equipment Management (EM) trial was one of the practical initiatives conceived and implemented by members of The Application Home Initiative (TAHI) with strong support from the DTI, to demonstrate the feasibility of interoperability between white and brown goods, and other domestic equipment. The trial ran from October 2002 to June 2005, over which period it achieved its core objectives through the deployment in early 2005 of an integrated system in trials in 15 occupied homes. Prior to roll out into the field, the work was underpinned by soak testing, validation, laboratory experiments, case studies, user questionnaires, simulations and other research, conducted in a single demonstration home in Loughborough, as well as in Universities in the East Midlands and Scotland. The trial was conducted against a backdrop of continual commercial change. Despite this difficult operating environment, the trial met its objectives, although not entirely as envisaged initially – a tribute to the determination of the trial’s membership, the strength of its formal governance and management processes, and especially, the financial support of the dti. The equipment on trial featured a central heating/hot water boiler, washing machine, security system, gas alarm and utility meters, all connected to a home gateway, integrated functionally and presented to the users via a single interface. The trial met its principal objective to show that by connecting appliances to each other and to a support system, benefits in remote condition monitoring, maintenance, appliance & home controls optimisation and convenience to the customer & service supplier could be provided. The EM trial identified exciting opportunities for the UK’s domestic white and brown goods manufacturing sector. Despite the relative immaturity of some of the enabling technologies people seem interested in the use of smart home devices to improve their quality of life or just generally make things easier at home in their busy schedules. Whilst the enabling technology behind future smart homes is being developed at a rapid pace, it is the intelligent application and integration of this technology that will make the difference to the home consumer. Just because the technology provider can make a ‘useful’ device it does not necessarily mean that the consumer actually wants to buy the ‘new’ invention. The EM trial has successfully shown where certain technology can be deployed successfully and also identified areas where further work is required
    • …
    corecore