927 research outputs found

    Using parametric regressors to disentangle properties of multi-feature processes

    Get PDF
    FMRI data observed under a given experimental condition may be decomposed into two parts: the average effect and the deviation of single replications from this average effect. The average effect is represented by the mean activation over a specific condition. The deviation from this average effect may be decomposed into two components as well: systematic variation due to known empirical factors and pure measurement error. In most fMRI designs deviations from mean activation may be treated as measurement error. Nevertheless, often deviation from the average also may contain systematic variation that can be distinguished from simple measurement error. In these cases, the average fMRI signal may provide only a coarse picture of real brain activation. The larger the variation within-condition, the coarser the average effect and the more relevant is the impact of deviations from it. Systematic deviation from the mean activation may be examined by defining a set of parametric regressors. Here, the applicability of parametric methods to refine the evaluation of fMRI studies is discussed with special emphasis on (i) examination of the impact of continuous predictors on the fMRI signal, (ii) control for variation within each experimental condition and (iii) isolation of specific contributions by different features of a single complex stimulus, especially in the case of a sampled stimulus. The usefulness and applicability of this method are discussed and an example with real data is presented

    Exploring the Effects of EEG-Based Alpha Neurofeedback on Working Memory Capacity in Healthy Participants

    Get PDF
    Neurofeedback, an operant conditioning neuromodulation technique, uses information from brain activities in real-time via brain–computer interface (BCI) technology. This technique has been utilized to enhance the cognitive abilities, including working memory performance, of human beings. The aims of this study are to investigate how alpha neurofeedback can improve working memory performance in healthy participants and to explore the underlying neural mechanisms in a working memory task before and after neurofeedback. Thirty-six participants divided into the NFT group and the control group participated in this study. This study was not blinded, and both the participants and the researcher were aware of their group assignments. Increasing power in the alpha EEG band was used as a neurofeedback in the eyes-open condition only in the NFT group. The data were collected before and after neurofeedback while they were performing the N-back memory task (N = 1 and N = 2). Both groups showed improvement in their working memory performance. There was an enhancement in the power of their frontal alpha and beta activities with increased working memory load (i.e., 2-back). The experimental group showed improvements in their functional connections between different brain regions at the theta level. This effect was absent in the control group. Furthermore, brain hemispheric lateralization was found during the N-back task, and there were more intra-hemisphere connections than inter-hemisphere connections of the brain. These results suggest that healthy participants can benefit from neurofeedback and from having their brain networks changed after the training

    Assessment of the capacity to modulate brain signals in a home-based SMR neurofeedback training setting

    Get PDF
    Electroencephalogram (EEG)-based neurofeedback (NF) is mainly used in clinical settings as a therapeutic intervention or to optimize performance in healthy individuals. Home-based NF systems are available and might facilitate general access to NF training, especially when repeated training sessions are necessary. However, it remains an open question whether NF training at home is possible without remote monitoring. In the present study, we assessed the capacity of healthy individuals to modulate their own EEG activity when using a home-based NF training system in a comparable manner as if participants had purchased a commercially available NF system. Participants’ face-to-face contact with experimenters was reduced to a minimum, and instructions were provided only in the form of written information or videos. Initially, 38 participants performed 9 sessions of sensorimotor rhythm (SMR) (12–15 Hz) based NF training (three generalization sessions, six training sessions). An active control group (n = 19) received feedback on random EEG frequencies. Because of technical problems, bad EEG data quality, or non-compliance, 21 participants had to be excluded from the final data analysis, providing first evidence for the difficulties of non-supervised home-based NF training. In this study, participants were not able to modulate their own brain activity in a desired direction during NF training. Our results indicate that personal interaction with a NF expert might be of relevance and that remote supervision of the training data and more direct communication with the NF users are necessary to enable successful NF training performance. We provide suggestions for the development and implementation of home-based NF systems

    Desenvolvimento de um software para o treinamento de tecnicos de manutenção de equipamentos biomedicos

    Get PDF
    Orientador: Saide Jorge CalilDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de ComputaçãoResumo: Desenvolvemos uma metodologia de projeto de aplicativos para o treinamento de técnicos de manutenção de equipamentos biomédicos. Como exemplo, criamos o aplicativo MONITOR, sobre monitores cardíacos e eletrocardiógrafos, que contém a simulação da operação, funcionamento e manutenção destes equipamentos. Escrevemos também o Arquivo de Ajuda "Manual do Monitor Cardíaco", contendo explicações sobre Anatomia e Fisiologia do Coração, Operação, Funcionamento, Interferências, Segurança e Compatibilidade destes Equipamentos com o Desfibrilador e a Unidade Eletrocirúrgica.Abstract: We developed a method for software design for biomedical equipment technician training. As an example, we created a software called MONITOR, which simulates the operation, functioning and maintaining of an ECG Monitor. We also wrote a Help File called "ECG Monitor Manual", that contains explanations about Heart Anatomy and Physiology, Equipment Operation, Functioning, Safety, Interference and Compatibility with Defibrillators and Electrosurgery Units.MestradoEngenharia BiomedicaMestre em Engenharia Elétric

    Virtual reality in neurologic rehabilitation of spatial disorientation

    Get PDF
    BACKGROUND: Topographical disorientation (TD) is a severe and persistent impairment of spatial orientation and navigation in familiar as well as new environments and a common consequence of brain damage. Virtual reality (VR) provides a new tool for the assessment and rehabilitation of TD. In VR training programs different degrees of active motor control over navigation may be implemented (i.e. more passive spatial navigation vs. more active). Increasing demands of active motor control may overload those visuo-spatial resources necessary for learning spatial orientation and navigation. In the present study we used a VR-based verbally-guided passive navigation training program to improve general spatial abilities in neurologic patients with spatial disorientation. METHODS: Eleven neurologic patients with focal brain lesions, which showed deficits in spatial orientation, as well as 11 neurologic healthy controls performed a route finding training in a virtual environment. Participants learned and recalled different routes for navigation in a virtual city over five training sessions. Before and after VR training, general spatial abilities were assessed with standardized neuropsychological tests. RESULTS: Route finding ability in the VR task increased over the five training sessions. Moreover, both groups improved different aspects of spatial abilities after VR training in comparison to the spatial performance before VR training. CONCLUSIONS: Verbally-guided passive navigation training in VR enhances general spatial cognition in neurologic patients with spatial disorientation as well as in healthy controls and can therefore be useful in the rehabilitation of spatial deficits associated with TD

    Developmental dyscalculia: compensatory mechanisms in left intraparietal regions in response to nonsymbolic magnitudes

    Get PDF
    BACKGROUND: Functional magnetic resonance imaging (fMRI) studies investigating the neural mechanisms underlying developmental dyscalculia are scarce and results are thus far inconclusive. Main aim of the present study is to investigate the neural correlates of nonsymbolic number magnitude processing in children with and without dyscalculia. METHODS: 18 children (9 with dyscalculia) were asked to solve a non-symbolic number magnitude comparison task (finger patterns) during brain scanning. For the spatial control task identical stimuli were employed, instructions varying only (judgment of palm rotation). This design enabled us to present identical stimuli with identical visual processing requirements in the experimental and the control task. Moreover, because numerical and spatial processing relies on parietal brain regions, task-specific contrasts are expected to reveal true number-specific activations. RESULTS: Behavioral results during scanning reveal that despite comparable (almost at ceiling) performance levels, task-specific activations were stronger in dyscalculic children in inferior parietal cortices bilaterally (intraparietal sulcus, supramarginal gyrus, extending to left angular gyrus). Interestingly, fMRI signal strengths reflected a group x task interaction: relative to baseline, controls produced significant deactivations in (intra)parietal regions bilaterally in response to number but not spatial processing, while the opposite pattern emerged in dyscalculics. Moreover, beta weights in response to number processing differed significantly between groups in left - but not right - (intra)parietal regions (becoming even positive in dyscalculic children). CONCLUSION: Overall, findings are suggestive of (a) less consistent neural activity in right (intra)parietal regions upon processing nonsymbolic number magnitudes; and (b) compensatory neural activity in left (intra)parietal regions in developmental dyscalculia.(VLID)218888

    Categorical and continuous - disentangling the neural correlates of the carry effect in multi-digit addition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently it was suggested that the carry effect observed in addition involves both categorical and continuous processing characteristics.</p> <p>Methods</p> <p>In the present study, we aimed at identifying the specific neural correlates associated with processing either categorical or continuous aspects of the carry effect in an fMRI study on multi-digit addition.</p> <p>Results</p> <p>In line with our expectations, we observed two distinct parts of the fronto-parietal network subserving numerical cognition to be associated with either one of these two characteristics. On the one hand, the categorical aspect of the carry effect was associated with left-hemispheric language areas and the basal ganglia probably reflecting increased demands on procedural and problem solving processes. Complementarily, the continuous aspect of the carry effect was associated with increased intraparietal activation indicating increasing demands on magnitude processing as well as place-value integration with increasing unit sum.</p> <p>Conclusions</p> <p>In summary, the findings suggest representations and processes underlying the carry effect in multi-digit addition to be more complex and interactive than assumed previously.</p
    corecore