217 research outputs found

    Two Conditions for Galaxy Quenching: Compact Centres and Massive Haloes

    Full text link
    We investigate the roles of two classes of quenching mechanisms for central and satellite galaxies in the SDSS (z<0.075z<0.075): those involving the halo and those involving the formation of a compact centre. For central galaxies with inner compactness Σ1kpc1099.4Mkpc2\Sigma_{\rm 1kpc} \sim 10^{9-9.4}M_{\odot} {\rm kpc}^{-2}, the quenched fraction fqf_{q} is strongly correlated with Σ1kpc\Sigma_{\rm 1kpc} with only weak halo mass MhM_{\rm h} dependence. However, at higher and lower Σ1kpc\Sigma_{\rm 1kpc}, sSFR is a strong function of MhM_{\rm h} and mostly independent of Σ1kpc\Sigma_{\rm 1kpc}. In other words, Σ1kpc1099.4Mkpc2\Sigma_{\rm 1kpc} \sim 10^{9-9.4} M_{\odot} {\rm kpc}^{-2} divides galaxies into those with high sSFR below and low sSFR above this range. In both the upper and lower regimes, increasing MhM_{\rm h} shifts the entire sSFR distribtuion to lower sSFR without a qualitative change in shape. This is true even at fixed MM_{*}, but varying MM_{*} at fixed MhM_{\rm h} adds no quenching information. Most of the quenched centrals with Mh>1011.8MM_{\rm h} > 10^{11.8}M_{\odot} are dense (Σ1kpc>109 Mkpc2\Sigma_{\rm 1kpc} > 10^{9}~ M_{\odot} {\rm kpc}^{-2}), suggesting compaction-related quenching maintained by halo-related quenching. However, 21% are diffuse, indicating only halo quenching. For satellite galaxies in the outskirts of halos, quenching is a strong function of compactness and a weak function of host MhM_{\rm h}. In the inner halo, MhM_{\rm h} dominates quenching, with 90%\sim 90\% of the satellites being quenched once Mh>1013MM_{\rm h} > 10^{13}M_{\odot}. This regional effect is greatest for the least massive satellites. As demonstrated via semi-analytic modelling with simple prescriptions for quenching, the observed correlations can be explained if quenching due to central compactness is rapid while quenching due to halo mass is slow.Comment: 16 pages, 11 figures, MNRAS accepte

    Supermassive black holes as the regulators of star formation in central galaxies

    Full text link
    We present a relationship between the black hole mass, stellar mass, and star formation rate of a diverse group of 91 galaxies with dynamically-measured black hole masses. For our sample of galaxies with a variety of morphologies and other galactic properties, we find that the specific star formation rate is a smoothly decreasing function of the ratio between black hole mass and stellar mass, or what we call the specific black hole mass. In order to explain this relation, we propose a physical framework where the gradual suppression of a galaxy's star formation activity results from the adjustment to an increase in specific black hole mass and, accordingly, an increase in the amount of heating. From this framework, it follows that at least some galaxies with intermediate specific black hole masses are in a steady state of partial quiescence with intermediate specific star formation rates, implying that both transitioning and steady-state galaxies live within this region known as the "green valley." With respect to galaxy formation models, our results present an important diagnostic with which to test various prescriptions of black hole feedback and its effects on star formation activity.Comment: 15 pages, 4 figures, 2 tables. Accepted for publication in The Astrophysical Journa

    Translating neuroscience: When is the use of clickers effective for student learning?

    Get PDF
    Objective: Teaching large content heavy classes presents a challenge to faculty in any discipline.In nursing education, particularly pharmacotherapeutics, student learning is critical to patient safety.Therefore, effective teaching practices are a must.But, there is a lack of education literature that connects the neuroscience of why a specific method such as using the technology of personal response systems (PRS) contributes to student learning.This study discusses the use of action research to evaluate the effectiveness of the use of personal response systems (PRS) or “clickers” in an undergraduate nursing pharmacology course, using knowledge of neuroscience to interpret the results. Methods:Action research was used to apply Neuro-semantic Language Learning Theory to the use of clickers in a nursing pharmatherapeutics course.Action research design allowed for the continuity of assessment and reflection by the faculty. Results:Outcomes were measures quantitatively using ATI (Assessment Technologies Institute) test scores pre- and post-intervention.ATI scores improved with the use of clickers.Qualitative student comments indicated satisfaction with the use of clickers to improve learning.Neuroscience and learning theory are used to explain the results of the study. Conclusion:Clickers by themselves do not necessarily create better learning, but thoughtful, purposeful integration of the technology, using techniques based on neuroscience elicit higher order thinking and provides deeper conceptual learning

    Two conditions for galaxy quenching: compact centres and massive haloes

    Get PDF
    We investigate the roles of two classes of quenching mechanisms for central and satellite galaxies in the Sloan Digital Sky Survey (z1011.8 M⊙ are dense (Σ1 kpc>109 M⊙ kpc−2), suggesting compaction-related quenching maintained by halo-related quenching. However, 21 per cent are diffuse, indicating only halo quenching. For satellite galaxies in the outskirts of haloes, quenching is a strong function of compactness and a weak function of host Mh. In the inner halo, Mh dominates quenching, with ∼90 per cent of the satellites being quenched once Mh>1013 M⊙. This regional effect is greatest for the least massive satellites. As demonstrated via semi-analytic modelling with simple prescriptions for quenching, the observed correlations can be explained if quenching due to central compactness is rapid while quenching due to halo mass is slo

    Interacting galaxies in the IllustrisTNG simulations - III. (The rarity of) quenching in post-merger galaxies

    Get PDF
    Galaxy mergers are traditionally one of the favoured mechanisms for the transformation of spiral galaxies to spheroids and for quenching star formation. To test this paradigm in the context of modern cosmological simulations, we use the IllustrisTNG simulation to investigate the impact of individual merger events on quenching star formation [i.e. star formation rate (SFR) at least 3σ below the star-forming main sequence] within 500 Myr after the coalescence phase. The rate of quenching amongst recently merged galaxies is compared with a control sample that is matched in redshift, stellar mass, SFR, black hole mass, and environment. We find quenching to be uncommon among the descendants of post-merger galaxies, with only ∼5 per cent of galaxies quenching within 500 Myr after the merger. Despite this low absolute rate, we find that quenching occurs in post-mergers at twice the rate of the control galaxies. The fraction of quenched post-merger descendants 1.5 Gyr after the merger become statistically indistinguishable from that of non-post-mergers, suggesting that mergers could speed up the quenching process in those post-mergers whose progenitors had physical conditions able to sustain effective active galactic nuclei (AGN) kinetic feedback, thus capable of removing gas from galaxies. Our results indicate that although quenching does not commonly occur promptly after coalescence, mergers none the less do promote the cessation of star formation in some post-mergers. We find that, in IllustrisTNG, it is the implementation of the AGN kinetic feedback that is responsible for quenching post-mergers, as well as non-post-merger controls. As a result of the released kinetic energy, galaxies experience gas loss and eventually they will quench. Galaxies with an initially low gas fraction show a preferable pre-disposition towards quenching. The primary distinguishing factor between quenched and star-forming galaxies is gas fraction, with a sharp boundary at fgas ~ 0.1 in TNG

    What shapes a galaxy? - Unraveling the role of mass, environment and star formation in forming galactic structure

    Get PDF
    We investigate the dependence of galaxy structure on a variety of galactic and environmental parameters for ~500,000 galaxies at z<0.2, taken from the Sloan Digital Sky Survey data release 7 (SDSS-DR7). We utilise bulge-to-total stellar mass ratio, (B/T)_*, as the primary indicator of galactic structure, which circumvents issues of morphological dependence on waveband. We rank galaxy and environmental parameters in terms of how predictive they are of galaxy structure, using an artificial neural network approach. We find that distance from the star forming main sequence (Delta_SFR), followed by stellar mass (M_*), are the most closely connected parameters to (B/T)_*, and are significantly more predictive of galaxy structure than global star formation rate (SFR), or any environmental metric considered (for both central and satellite galaxies). Additionally, we make a detailed comparison to the Illustris hydrodynamical simulation and the LGalaxies semi-analytic model. In both simulations, we find a significant lack of bulge-dominated galaxies at a fixed stellar mass, compared to the SDSS. This result highlights a potentially serious problem in contemporary models of galaxy evolution.Comment: Accepted to MNRAS. 31 pages, 15 figure

    AGN Feedback in SDSS-IV MaNGA: AGNs have Suppressed Central Star Formation Rates

    Full text link
    Despite the importance of feedback from active galactic nuclei (AGNs) in models of galaxy evolution, observational constraints on the influence of AGN feedback on star formation remain weak. To this end, we have compared the star formation trends of 279 low-redshift AGN galaxies with 558 inactive control galaxies using integral field unit spectroscopy from the SDSS-IV MaNGA survey. With a Gaussian process-based methodology, we reconstruct nonparametric star formation histories in spatially resolved spaxels covering the face of each galaxy. Based on galaxy-wide star formation rates (SFRs) alone, we find no obvious signatures of AGN feedback. However, the AGN galaxies have significantly suppressed central (kiloparsec-scale) SFRs, lying up to a factor of 22 below those of the control galaxies, providing direct observational evidence of AGN feedback suppressing star formation. The suppression of central SFRs in the AGN galaxies began in the central regions 6{\sim} 6 Gyr ago (redshift z0.7z {\sim} 0.7), taking place over a few gigayears. A small subset of the AGN galaxies were rapidly driven to quiescence shortly before being observed (in the last 500500 Myr), potentially indicating instances of AGN-driven feedback. More frequently, however, star formation continues in the AGN galaxies, with suppression primarily in the central regions. This is suggestive of a picture in which integrated (Gyr-timescale) AGN feedback can significantly affect central star formation, but may be inefficient in driving galaxy-wide quenching in low-redshift galaxies, instead leaving them in the green valley.Comment: 22 pages, 15 figures. Accepted for publication in Ap

    Dependence of Galaxy Quenching on Halo Mass and Distance from its Centre

    Full text link
    We study the dependence of star-formation quenching on galaxy mass and environment, in the SDSS (z~0.1) and the AEGIS (z~1). It is crucial that we define quenching by low star-formation rate rather than by red colour, given that one third of the red galaxies are star forming. We address stellar mass M*, halo mass Mh, density over the nearest N neighbours deltaN, and distance to the halo centre D. The fraction of quenched galaxies appears more strongly correlated with Mh at fixed M* than with M* at fixed Mh, while for satellites quenching also depends on D. We present the M*-Mh relation for centrals at z~1. At z~1, the dependence of quenching on M* at fixed Mh is somewhat more pronounced than at z~0, but the quenched fraction is low (10%) and the haloes are less massive. For satellites, M*-dependent quenching is noticeable at high D, suggesting a quenching dependence on sub-halo mass for recently captured satellites. At small D, where satellites likely fell in more than a few Gyr ago, quenching strongly depends on Mh, and not on M*. The Mh-dependence of quenching is consistent with theoretical wisdom where virial shock heating in massive haloes shuts down accretion and triggers ram-pressure stripping, causing quenching. The interpretation of deltaN is complicated by the fact that it depends on the number of observed group members compared to N, motivating the use of D as a better measure of local environment.Comment: 23 pages, 13 figures, accepted by MNRA
    corecore