47,046 research outputs found
Elliptic Flow from a Transversally Thermalized Fireball
The agreement of elliptic flow data at RHIC at central rapidity with the
hydrodynamic model has led to the conclusion of very rapid thermalization. This
conclusion is based on the intuitive argument that hydrodynamics, which assumes
instantaneous local thermalization, produces the largest possible elliptic flow
values and that the data seem to saturate this limit. We here investigate the
question whether incompletely thermalized viscous systems may actually produce
more elliptic flow than ideal hydrodynamics. Motivated by the extremely fast
primordial longitudinal expansion of the reaction zone, we investigate a toy
model which exhibits thermalization only in the transverse directions but
undergoes collisionless free-streaming expansion in the longitudinal direction.
For collisions at RHIC energies, elliptic flow results from the model are
compared with those from hydrodynamics. With the final particle yield and
\kt-distribution fixed, the transversally thermalized model is shown not to
be able to produce the measured amount of elliptic flow. This investigation
provides further support for very rapid local kinetic equilibration at RHIC. It
also yields interesting novel results for the elliptic flow of massless
particles such as direct photons.Comment: revtex4, 15 pages + 10 embedded EPS figure
Recommended from our members
Management of Agitation During the COVID-19 Pandemic
The coronavirus disease 2019 (COVID-19) pandemic caused by the coronavirus SARS-CoV-2 has radically altered delivery of care in emergency settings. Unprecedented hardship due to ongoing fears of exposure and threats to personal safety, along with societal measures enacted to curb disease transmission, have had broad psychosocial impact on patients and healthcare workers alike. These changes can significantly affect diagnosing and managing behavioral emergencies such as agitation in the emergency department. On behalf of the American Association for Emergency Psychiatry, we highlight unique considerations for patients with severe behavioral symptoms and staff members managing symptoms of agitation during COVID-19. Early detection and treatment of agitation, precautions to minimize staff hazards, coordination with security personnel and psychiatric services, and avoidance of coercive strategies that cause respiratory depression will help mitigate heightened risks to safety caused by this outbreak
Pion Interferometry for Hydrodynamical Expanding Source with a Finite Baryon Density
We calculate the two-pion correlation function for an expanding hadron source
with a finite baryon density. The space-time evolution of the source is
described by relativistic hydrodynamics and the Hanbury-Brown-Twiss (HBT)
radius is extracted after effects of collective expansion and multiple
scattering on the HBT interferometry have been taken into account, using
quantum probability amplitudes in a path-integral formalism. We find that this
radius is substantially smaller than the HBT radius extracted from the
freeze-out configuration.Comment: 4 pages, 2 figure
Transmission Through Carbon Nanotubes With Polyhedral Caps
We study electron transport between capped carbon nanotubes and a substrate,
and relate the transmission probability to the local density of states in the
cap. Our results show that the transmission probability mimics the behavior of
the density of states at all energies except those that correspond to localized
states in the cap. Close proximity of a substrate causes hybridization of the
localized state. As a result, new transmission paths open from the substrate to
nanotube continuum states via the localized states in the cap. Interference
between various transmission paths gives rise to antiresonances in the
transmission probability, with the minimum transmission equal to zero at
energies of the localized states. Defects in the nanotube that are placed close
to the cap cause resonances in the transmission probability, instead of
antiresonances, near the localized energy levels. Depending on the spatial
position of defects, these resonant states are capable of carrying a large
current. These results are relevant to carbon nanotube based studies of
molecular electronics and probe tip applications
Quantum kinetic description of Coulomb effects in one-dimensional nano-transistors
In this article, we combine the modified electrostatics of a one-dimensional
transistor structure with a quantum kinetic formulation of Coulomb interaction
and nonequilibrium transport. A multi-configurational self-consistent Green's
function approach is presented, accounting for fluctuating electron numbers. On
this basis we provide a theory for the simulation of electronic transport and
quantum charging effects in nano-transistors, such as gated carbon nanotube and
whisker devices and one-dimensional CMOS transistors. Single-electron charging
effects arise naturally as a consequence of the Coulomb repulsion within the
channel
Prospects of cold dark matter searches with an ultra-low-energy germanium detector
The report describes the research program on the development of
ultra-low-energy germanium detectors, with emphasis on WIMP dark matter
searches. A threshold of 100 eV is achieved with a 20 g detector array,
providing a unique probe to the low-mas WIMP. Present data at a surface
laboratory is expected to give rise to comparable sensitivities with the
existing limits at the WIMP-mass range. The projected
parameter space to be probed with a full-scale, kilogram mass-range experiment
is presented. Such a detector would also allow the studies of neutrino-nucleus
coherent scattering and neutrino magnetic moments.Comment: 3 pages, 4 figures, Proceedings of TAUP-2007 Conferenc
Influence of flow confinement on the drag force on a static cylinder
The influence of confinement on the drag force on a static cylinder in a
viscous flow inside a rectangular slit of aperture has been investigated
from experimental measurements and numerical simulations. At low enough
Reynolds numbers, varies linearly with the mean velocity and the viscosity,
allowing for the precise determination of drag coefficients and
corresponding respectively to a mean flow parallel and
perpendicular to the cylinder length . In the parallel configuration, the
variation of with the normalized diameter of the
cylinder is close to that for a 2D flow invariant in the direction of the
cylinder axis and does not diverge when . The variation of
with the distance from the midplane of the model reflects the
parabolic Poiseuille profile between the plates for while it
remains almost constant for . In the perpendicular configuration,
the value of is close to that corresponding to a 2D system
only if and/or if the clearance between the ends of the cylinder
and the side walls is very small: in that latter case,
diverges as due to the blockage of the flow. In other cases, the
side flow between the ends of the cylinder and the side walls plays an
important part to reduce : a full 3D description of the flow is
needed to account for these effects
Coherency in Neutrino-Nucleus Elastic Scattering
Neutrino-nucleus elastic scattering provides a unique laboratory to study the
quantum mechanical coherency effects in electroweak interactions, towards which
several experimental programs are being actively pursued. We report results of
our quantitative studies on the transitions towards decoherency. A parameter
() is identified to describe the degree of coherency, and its
variations with incoming neutrino energy, detector threshold and target nucleus
are studied. The ranges of which can be probed with realistic neutrino
experiments are derived, indicating complementarity between projects with
different sources and targets. Uncertainties in nuclear physics and in
would constrain sensitivities in probing physics beyond the standard model. The
maximum neutrino energies corresponding to >0.95 are derived.Comment: 5 pages, 4 figures, 3 tables. V2 -- Published Versio
Unification of bulk and interface electroresistive switching in oxide systems
We demonstrate that the physical mechanism behind electroresistive switching
in oxide Schottky systems is electroformation, as in insulating oxides.
Negative resistance shown by the hysteretic current-voltage curves proves that
impact ionization is at the origin of the switching. Analyses of the
capacitance-voltage and conductance-voltage curves through a simple model show
that an atomic rearrangement is involved in the process. Switching in these
systems is a bulk effect, not strictly confined at the interface but at the
charge space region.Comment: 4 pages, 3 figures, accepted in PR
- …