876 research outputs found

    Adiponectin Prevents Diabetic Premature Senescence of Endothelial Progenitor Cells and Promotes Endothelial Repair by Suppressing the p38 MAP Kinase/p16INK4A Signaling Pathway

    Get PDF
    OBJECTIVE - A reduced number of circulating endothelial progenitor cells (EPCs) are casually associated with the cardiovascular complication of diabetes. Adiponectin exerts multiple protective effects against cardiovascular disease, independent of its insulin-sensitizing activity. The objective of this study was to investigate whether adiponectin plays a role in modulating the bioavailability of circulating EPCs and endothelial repair. RESEARCH DESIGN AND METHODS - Adiponectin knockout mice were crossed with db+/- mice to produce db/db diabetic mice without adiponectin. Circulating number of EPCs were analyzed by flow cytometry. Reendothelialization was evaluated by staining with Evans blue after wire-induced carotid injury. RESULTS - In adiponectin knockout mice, the number of circulating EPCs decreased in an age-dependent manner compared with the wild-type controls, and this difference was reversed by the chronic infusion of recombinant adiponectin. In db/db diabetic mice, the lack of adiponectin aggravated the hyperglycemia-induced decrease in circulating EPCs and also diminished the stimulatory effects of the PPARγ agonist rosiglitazone on EPC production and reendothelialization. In EPCs isolated from both human peripheral blood and mouse bone marrow, treatment with adiponectin prevented high glucose-induced premature senescence. At the molecular level, adiponectin decreased high glucose-induced accumulation of intracellular reactive oxygen species and consequently suppressed activation of p38 MAP kinase (MAPK) and expression of the senescence marker p16INK4A. CONCLUSIONS - Adiponectin prevents EPC senescence by inhibiting the ROS/p38 MAPK/p16 INK4A signaling cascade. The protective effects of adiponectin against diabetes vascular complications are attributed in part to its ability to counteract hyperglycemia-mediated decrease in the number of circulating EPCs. © 2010 by the American Diabetes Association.published_or_final_versio

    High-Dose Carmustine, Etoposide, and Cyclophosphamide Followed by Allogeneic Hematopoietic Cell Transplantation for Non-Hodgkin Lymphoma

    Get PDF
    AbstractAllogeneic hematopoietic cell transplantation (HCT) has been shown to be curative in a group of patients with aggressive non-Hodgkin lymphoma (NHL). A previous study has demonstrated equivalent outcomes with a conditioning regimen based on total body irradiation and another not based on total body irradiation with preparative therapy using cyclophosphamide, carmustine, and etoposide (CBV) in autologous HCT. We investigated the safety and efficacy of using CBV in an allogeneic setting. Patients were required to have relapsed or be at high risk for subsequent relapse of NHL. All patients had a fully HLA-matched sibling donor. Patients received carmustine (15 mg/kg), etoposide (60 mg/kg), and cyclophosphamide (100 mg/kg) on days −6, −4, and −2, respectively, followed by allogeneic HCT. All patients were treated with cyclosporine and methylprednisolone as prophylaxis for graft-versus-host disease (GVHD). Thirty-one patients (median age, 46 years) who were felt to be inappropriate candidates for autologous transplantation were enrolled. Each subject had a median of 3 previous chemotherapy regimens. All patients engrafted. Fifteen of 31 patients are alive. Median follow-up time was 11.5 months (range, .4-126). There were 8 deaths due to relapse. Nonrelapse mortality (n = 8) included infection (n = 3), GVHD (n = 2), diffuse alveolar hemorrhage (n = 1), veno-occlusive disease in the setting of concurrent acute GVHD of the liver (n = 1), and leukoencephalopathy (n = 1). Probabilities of event-free survival and overall survival were, respectively, 44% (95% confidence interval, 26%-62%) and 51% (33%-69%) at 1 year and 44% (26%-62%) and 47% (29%-65%) at 5 years. Probability of relapse was 33% (15%-51%) at 1 year and 5 years. Probability of nonrelapse mortality was 31% (13%-49%) at 1 year and 5 years. Incidences were 29% for acute GVHD and 39% for chronic GVHD. None of the 12 patients who developed chronic GVHD has disease recurrence. Patients who had required >3 previous chemotherapy regimens before HCT had an increased probability of relapse. CBV is an effective preparative regimen for patients with aggressive NHL who undergo allogeneic HCT

    Adoptive Immunotherapy with Cytokine-Induced Killer Cells for Patients with Relapsed Hematologic Malignancies after Allogeneic Hematopoietic Cell Transplantation

    Get PDF
    Donor leukocyte infusions induce remissions in some patients with hematologic malignancies who relapse after allogeneic hematopoietic cell transplantation (HCT); however, graft-versus-host disease (GVHD) remains the major complication of this strategy. Cytokine-induced killer (CIK) cells are a unique population of cytotoxic T lymphocytes that express the CD3+CD56+ phenotype and show marked up-regulation of the natural killer cell receptor NKG2D (CD314). CIK cells are non–major histocompatibility complex–restricted and NKG2D-dependent in target recognition and cytotoxicity. We explored the feasibility of ex vivo expansion of allogeneic CIK cells in patients with relapsed hematologic malignancies after allogeneic HCT. Eighteen patients (median age, 53 years; range, 20-69 years) received CIK cell infusions at escalating doses of 1 × 107 CD3+ cells/kg (n = 4), 5 × 107 CD3+ cells/kg (n = 6), and 1 × 108 CD3+ cells/kg (n = 8). The median expansion of CD3+ cells was 12-fold (range, 4- to 91-fold). CD3+CD56+ cells represented a median of 11% (range, 4%-44%) of the harvested cells, with a median 31-fold (range, 7- to 515-fold) expansion. Median CD3+CD314+ cell expression was 53% (range, 32%-78%) of harvested cells. Significant cytotoxicity was demonstrated in vitro against a panel of human tumor cell lines. Acute GVHD grade I-II was seen in 2 patients, and 1 patient had limited chronic GVHD. After a median follow-up of 20 months (range, 1-69 months) from CIK infusion, the median overall survival was 28 months, and the median event-free survival was 4 months. All deaths were due to relapsed disease; however, 5 patients had longer remissions after infusion of CIK cells than from allogeneic HCT to relapse. Our findings indicate that this form of adoptive immunotherapy is well tolerated and induces a low incidence of GVHD, supporting further investigation as an upfront modality to enhance graft-versus-tumor responses in high-risk patient populations

    Response of the Human Circadian System to Millisecond Flashes of Light

    Get PDF
    Ocular light sensitivity is the primary mechanism by which the central circadian clock, located in the suprachiasmatic nucleus (SCN), remains synchronized with the external geophysical day. This process is dependent on both the intensity and timing of the light exposure. Little is known about the impact of the duration of light exposure on the synchronization process in humans. In vitro and behavioral data, however, indicate the circadian clock in rodents can respond to sequences of millisecond light flashes. In a cross-over design, we tested the capacity of humans (n = 7) to respond to a sequence of 60 2-msec pulses of moderately bright light (473 lux) given over an hour during the night. Compared to a control dark exposure, after which there was a 3.5±7.3 min circadian phase delay, the millisecond light flashes delayed the circadian clock by 45±13 min (p<0.01). These light flashes also concomitantly increased subjective and objective alertness while suppressing delta and sigma activity (p<0.05) in the electroencephalogram (EEG). Our data indicate that phase shifting of the human circadian clock and immediate alerting effects can be observed in response to brief flashes of light. These data are consistent with the hypothesis that the circadian system can temporally integrate extraordinarily brief light exposures

    A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk

    Get PDF
    We review the evolution, state of the art and future lines of research on the sources, transport pathways, and sinks of particulate trace elements in urban terrestrial environments to include the atmosphere, soils, and street and indoor dusts. Such studies reveal reductions in the emissions of some elements of historical concern such as Pb, with interest consequently focusing on other toxic trace elements such as As, Cd, Hg, Zn, and Cu. While establishment of levels of these elements is important in assessing the potential impacts of human society on the urban environment, it is also necessary to apply this knowledge in conjunction with information on the toxicity of those trace elements and the degree of exposure of human receptors to an assessment of whether such contamination represents a real risk to the city’s inhabitants and therefore how this risk can be addressed

    Targeting of the Human Coagulation Factor IX Gene at rDNA Locus of Human Embryonic Stem Cells

    Get PDF
    BACKGROUND: Genetic modification is a prerequisite to realizing the full potential of human embryonic stem cells (hESCs) in human genetic research and regenerative medicine. Unfortunately, the random integration methods that have been the primary techniques used keep creating problems, and the primary alternative method, gene targeting, has been effective in manipulating mouse embryonic stem cells (mESCs) but poorly in hESCs. METHODOLOGY/PRINCIPAL FINDINGS: Human ribosomal DNA (rDNA) repeats are clustered on the short arm of acrocentric chromosomes. They consist of approximately 400 copies of the 45S pre-RNA (rRNA) gene per haploid. In the present study, we targeted a physiological gene, human coagulation factor IX, into the rDNA locus of hESCs via homologous recombination. The relative gene targeting efficiency (>50%) and homologous recombination frequency (>10(-5)) were more than 10-fold higher than those of loci targeted in previous reports. Meanwhile, the targeted clones retained both a normal karyotype and the main characteristics of ES cells. The transgene was found to be stably and ectopically expressed in targeted hESCs. CONCLUSION/SIGNIFICANCE: This is the first targeting of a human physiological gene at a defined locus on the hESC genome. Our findings indicate that the rDNA locus may serve as an ideal harbor for transgenes in hESCs
    corecore