38,896 research outputs found
Cold-air performance of a 15.41-cm-tip-diameter axial-flow power turbine with variable-area stator designed for a 75-kW automotive gas turbine engine
An experimental evaluation of the aerodynamic performance of the axial flow, variable area stator power turbine stage for the Department of Energy upgraded automotive gas turbine engine was conducted in cold air. The interstage transition duct, the variable area stator, the rotor, and the exit diffuser were included in the evaluation of the turbine stage. The measured total blading efficiency was 0.096 less than the design value of 0.85. Large radial gradients in flow conditions were found at the exit of the interstage duct that adversely affected power turbine performance. Although power turbine efficiency was less than design, the turbine operating line corresponding to the steady state road load power curve was within 0.02 of the maximum available stage efficiency at any given speed
Content Placement in Cache-Enabled Sub-6 GHz and Millimeter-Wave Multi-Antenna Dense Small Cell Networks
This paper studies the performance of cacheenabled dense small cell networks consisting of multi-antenna
sub-6 GHz and millimeter-wave (mm-wave) base stations. Different from the existing works which only consider a single antenna at each base station, the optimal content placement is unknown when the base stations have multiple antennas. We first derive the successful content delivery probability by accounting for the key channel features at sub-6 GHz and mm-wave frequencies. The maximization of the successful content delivery probability is a challenging problem. To tackle it, we first propose a constrained
cross-entropy algorithm which achieves the near-optimal solution with moderate complexity. We then develop another simple yet effective heuristic probabilistic content placement scheme, termed two-stair algorithm, which strikes a balance between caching the most popular contents and achieving content diversity. Numerical results demonstrate the superior performance of the constrained cross-entropy method and that the two-stair algorithm yields significantly better performance than only caching the most popular contents. The comparisons between the sub-6 GHz and
mm-wave systems reveal an interesting tradeoff between caching capacity and density for the mm-wave system to achieve similar performance as the sub-6 GHz system
Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment
We develop a theoretical analysis of four-wave mixing used to generate photon
pairs useful for quantum information processing. The analysis applies to a
single mode microstructured fibre pumped by an ultra-short coherent pulse in
the normal dispersion region. Given the values of the optical propagation
constant inside the fibre, we can estimate the created number of photon pairs
per pulse, their central wavelength and their respective bandwidth. We use the
experimental results from a picosecond source of correlated photon pairs using
a micro-structured fibre to validate the model. The fibre is pumped in the
normal dispersion regime at 708nm and phase matching is satisfied for widely
spaced parametric wavelengths of 586nm and 894nm. We measure the number of
photons per pulse using a loss-independent coincidence scheme and compare the
results with the theoretical expectation. We show a good agreement between the
theoretical expectations and the experimental results for various fibre lengths
and pump powers.Comment: 23 pages, 9 figure
Performance Analysis and Optimization of Cache-Enabled Small Cell Networks
This paper studies the performance of cache-enabled dense small cell networks consisting of multi- antenna sub-6 GHz and millimeter-wave base stations. We first derive the successful content delivery probability by accounting for the key channel features at sub-6 GHz and mmWave frequencies. In general, the optimal content placement is unknown when the base stations have multiple antennas. Then we propose a simple yet effective probabilistic content placement scheme to maximize the successful content delivery probability, which could balance caching both the most popular contents and achieving content diversity. Numerical results demonstrate that our proposed content placement scheme yields significantly better performance than only caching the most popular contents. The comparisons between the sub-6 GHz and millimeter-wave systems reveal an interesting tradeoff between caching capacity and base station density for the millimeter-wave system to achieve similar performance as the sub-6 GHz system
Perspective on Quark Mass and Mixing Relations
Recent data indicate that , while
seems to be GeV. The relations and suggest that %a plausible clean separation of
the %origin of the quark mixing matrix: the down type sector is responsible for
and , while comes from the up
type sector. Five to six parameters might suffice to account for the ten quark
mass and mixing parameters, resulting in specific power series representations
for the mass matrices. In this picture, seems to be the more sensible
expansion parameter, while is
tied empirically to .Comment: 10 pages, ReVtex, no figure
Heavy flavor kinetics at the hadronization transition
We investigate the in-medium modification of the charmonium breakup processes
due to the Mott effect for light (pi, rho) and open-charm (D, D*)
quark-antiquark bound states at the chiral/deconfinement phase transition. The
Mott effect for the D-mesons effectively reduces the threshold for charmonium
breakup cross sections, which is suggested as an explanation of the anomalous
J/psi suppression phenomenon in the NA50 experiment. Further implications of
finite-temperature mesonic correlations for the hadronization of heavy flavors
in heavy-ion collisions are discussed.Comment: 4 pages, 2 figures, Contribution to SQM2001 Conference, submitted to
J. Phys.
Radio Galaxy Zoo: Cosmological Alignment of Radio Sources
We study the mutual alignment of radio sources within two surveys, FIRST and
TGSS. This is done by producing two position angle catalogues containing the
preferential directions of respectively and extended
sources distributed over more than and square degrees. The
identification of the sources in the FIRST sample was performed in advance by
volunteers of the Radio Galaxy Zoo project, while for the TGSS sample it is the
result of an automated process presented here. After taking into account
systematic effects, marginal evidence of a local alignment on scales smaller
than is found in the FIRST sample. The probability of this happening
by chance is found to be less than per cent. Further study suggests that on
scales up to the alignment is maximal. For one third of the sources,
the Radio Galaxy Zoo volunteers identified an optical counterpart. Assuming a
flat CDM cosmology with , we
convert the maximum angular scale on which alignment is seen into a physical
scale in the range Mpc . This result supports recent
evidence reported by Taylor and Jagannathan of radio jet alignment in the
deg ELAIS N1 field observed with the Giant Metrewave Radio Telescope. The
TGSS sample is found to be too sparsely populated to manifest a similar signal
Performance Analysis for Control- and User-Plane Separation based RAN with Non-Uniformly Distributed Users
In the control- and user-plane separation (CUPS) based radio access networks (RANs), control-signaling and data are transmitted by the control base stations (CBSs) and data base stations (DBSs), respectively. However, existing studies usually model the C/U-planes as two separate homogeneous networks, neglecting the dependence among the two planes and users. To address this problem, we analyze the coverage probability, spectrum efficiency (SE) and delay considering the dependent features among CBSs, DBSs, and non-uniformly distributed users based on stochastic geometry. Firstly, we present an analytical model for CUPS, where the DBSs are deployed at user hotspots based on Poisson point processes (PPPs), users are clustered around DBSs based on Poisson cluster processes (PCPs), and CBSs are deployed according to a dependent thinning of locations of DBSs based on Matérn hard-core processes (MHCPs). Secondly, we design novel distance-based fractional frequency reuse (FFR) schemes by exploiting the properties of PCP and MHCP to improve the coverage of cell edge users. Thirdly, we derive the distributions of user downlink rates, which are used to analyze the average queueing delay under M/M/C queueing model. Numerical results are presented to verify the efficiency of the proposed model compared to independently distributed BSs and users, and show the dependent BS deployment could significantly improve the coverage of the network
- …