1,525 research outputs found

    Removal Of Volatile Organic Compound (Voc) From Air Using Zeolite Based Adsorption-Catalytic Combustion System [TD885.5.R46 W872 2007 f rb].

    Get PDF
    Pembangunan kaedah termaju dalam proses penyingkiran sebatian organic meruap (VOC) yang terdiri daripada unit penjerapan diikuti oleh unit pembakaran bermangkin telah dicadangkan dalam kajian ini. The development of an advanced VOC destruction process consists of an adsorption unit followed by a catalytic combustion system has been proposed in the current study

    Removal Of Volatile Organic Compound (Voc) From Air Using Zeolite Based Adsorption-Catalytic Combustion System

    Get PDF
    Pembangunan kaedah termaju dalam proses penyingkiran sebatian organic meruap (VOC) yang terdiri daripada unit penjerapan diikuti oleh unit pembakaran bermangkin telah dicadangkan dalam kajian ini. The development of an advanced VOC destruction process consists of an adsorption unit followed by a catalytic combustion system has been proposed in the current study

    BAsE-Seq: a method for obtaining long viral haplotypes from short sequence reads.

    Get PDF
    We present a method for obtaining long haplotypes, of over 3 kb in length, using a short-read sequencer, Barcode-directed Assembly for Extra-long Sequences (BAsE-Seq). BAsE-Seq relies on transposing a template-specific barcode onto random segments of the template molecule and assembling the barcoded short reads into complete haplotypes. We applied BAsE-Seq on mixed clones of hepatitis B virus and accurately identified haplotypes occurring at frequencies greater than or equal to 0.4%, with >99.9% specificity. Applying BAsE-Seq to a clinical sample, we obtained over 9,000 viral haplotypes, which provided an unprecedented view of hepatitis B virus population structure during chronic infection. BAsE-Seq is readily applicable for monitoring quasispecies evolution in viral diseases

    The CDEX-1 1 kg Point-Contact Germanium Detector for Low Mass Dark Matter Searches

    Full text link
    The CDEX Collaboration has been established for direct detection of light dark matter particles, using ultra-low energy threshold p-type point-contact germanium detectors, in China JinPing underground Laboratory (CJPL). The first 1 kg point-contact germanium detector with a sub-keV energy threshold has been tested in a passive shielding system located in CJPL. The outputs from both the point-contact p+ electrode and the outside n+ electrode make it possible to scan the lower energy range of less than 1 keV and at the same time to detect the higher energy range up to 3 MeV. The outputs from both p+ and n+ electrode may also provide a more powerful method for signal discrimination for dark matter experiment. Some key parameters, including energy resolution, dead time, decay times of internal X-rays, and system stability, have been tested and measured. The results show that the 1 kg point-contact germanium detector, together with its shielding system and electronics, can run smoothly with good performances. This detector system will be deployed for dark matter search experiments.Comment: 6 pages, 8 figure

    Spine-GFlow: A hybrid learning framework for robust multi-tissue segmentation in lumbar MRI without manual annotation

    Get PDF
    Most learning-based magnetic resonance image (MRI) segmentation methods rely on the manual annotation to provide supervision, which is extremely tedious, especially when multiple anatomical structures are required. In this work, we aim to develop a hybrid framework named Spine-GFlow that combines the image features learned by a CNN model and anatomical priors for multi-tissue segmentation in a sagittal lumbar MRI. Our framework does not require any manual annotation and is robust against image feature variation caused by different image settings and/or underlying pathology. Our contributions include: 1) a rule-based method that automatically generates the weak annotation (initial seed area), 2) a novel proposal generation method that integrates the multi-scale image features and anatomical prior, 3) a comprehensive loss for CNN training that optimizes the pixel classification and feature distribution simultaneously. Our Spine-GFlow has been validated on 2 independent datasets: HKDDC (containing images obtained from 3 different machines) and IVDM3Seg. The segmentation results of vertebral bodies (VB), intervertebral discs (IVD), and spinal canal (SC) are evaluated quantitatively using intersection over union (IoU) and the Dice coefficient. Results show that our method, without requiring manual annotation, has achieved a segmentation performance comparable to a model trained with full supervision (mean Dice 0.914 vs 0.916)

    Towards Mobility Data Science (Vision Paper)

    Full text link
    Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the emerging domain of mobility data science. Towards a unified approach to mobility data science, we envision a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art and describe open challenges for the research community in the coming years.Comment: Updated arXiv metadata to include two authors that were missing from the metadata. PDF has not been change

    Proline-Rich Tyrosine Kinase 2 (Pyk2) Promotes Cell Motility of Hepatocellular Carcinoma through Induction of Epithelial to Mesenchymal Transition

    Get PDF
    Aims: Proline-rich tyrosine kinase 2 (Pyk2), a non-receptor tyrosine kinase of the focal adhesion kinase (FAK) family, is up-regulated in more than 60% of the tumors of hepatocellular carcinoma (HCC) patients. Forced overexpression of Pyk2 can promote the proliferation and invasion of HCC cells. In this study, we aimed to explore the underlying molecular mechanism of Pyk2-mediated cell migration of HCC cells. Methodology/Principal Findings: We demonstrated that Pyk2 transformed the epithelial HCC cell line Hep3B into a mesenchymal phenotype via the induction of epithelial to mesenchymal transition (EMT), signified by the up-regulation of membrane ruffle formation, activation of Rac/Rho GTPases, down-regulation of epithelial genes E-cadherin and cytokeratin as well as promotion of cell motility in presence of lysophosphatidic acid (LPA). Suppression of Pyk2 by overexpression of dominant negative PRNK domain in the metastatic HCC cell line MHCC97L transformed its fibroblastoid phenotype to an epithelial phenotype with up-regulation of epithelial genes, down-regulation of mesenchymal genes N-cadherin and STAT5b, and reduction of LPA-induced membrane ruffle formation and cell motility. Moreover, overexpression of Pyk2 in Hep3B cells promoted the phosphorylation and localization of mesenchymal gene Hic-5 onto cell membrane while suppression of Pyk2 in MHCC97L cells attenuated its phosphorylation and localization. Conclusion: These data provided new evidence of the underlying mechanism of Pyk2 in controlling cell motility of HCC cells through regulation of genes associated with EMT. © 2011 Sun et al.published_or_final_versio

    Identification and Profiling of MicroRNAs from Skeletal Muscle of the Common Carp

    Get PDF
    The common carp is one of the most important cultivated species in the world of freshwater aquaculture. The cultivation of this species is particularly productive due to its high skeletal muscle mass; however, the molecular mechanisms of skeletal muscle development in the common carp remain unknown. It has been shown that a class of non-coding ∼22 nucleotide RNAs called microRNAs (miRNAs) play important roles in vertebrate development. They regulate gene expression through sequence-specific interactions with the 3′ untranslated regions (UTRs) of target mRNAs and thereby cause translational repression or mRNA destabilization. Intriguingly, the role of miRNAs in the skeletal muscle development of the common carp remains unknown. In this study, a small-RNA cDNA library was constructed from the skeletal muscle of the common carp, and Solexa sequencing technology was used to perform high throughput sequencing of the library. Subsequent bioinformatics analysis identified 188 conserved miRNAs and 7 novel miRNAs in the carp skeletal muscle. The miRNA expression profiling showed that, miR-1, miR-133a-3p, and miR-206 were specifically expressed in muscle-containing organs, and that miR-1, miR-21, miR-26a, miR-27a, miR-133a-3p, miR-206, miR-214 and miR-222 were differentially expressed in the process of skeletal muscle development of the common carp. This study provides a first identification and profiling of miRNAs related to the muscle biology of the common carp. Their identification could provide clues leading towards a better understanding of the molecular mechanisms of carp skeletal muscle development
    corecore