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A B S T R A C T   

Most learning-based magnetic resonance image (MRI) segmentation methods rely on the manual annotation to 
provide supervision, which is extremely tedious, especially when multiple anatomical structures are required. In 
this work, we aim to develop a hybrid framework named Spine-GFlow that combines the image features learned 
by a CNN model and anatomical priors for multi-tissue segmentation in a sagittal lumbar MRI. Our framework 
does not require any manual annotation and is robust against image feature variation caused by different image 
settings and/or underlying pathology. Our contributions include: 1) a rule-based method that automatically 
generates the weak annotation (initial seed area), 2) a novel proposal generation method that integrates the 
multi-scale image features and anatomical prior, 3) a comprehensive loss for CNN training that optimizes the 
pixel classification and feature distribution simultaneously. Our Spine-GFlow has been validated on 2 inde
pendent datasets: HKDDC (containing images obtained from 3 different machines) and IVDM3Seg. The seg
mentation results of vertebral bodies (VB), intervertebral discs (IVD), and spinal canal (SC) are evaluated 
quantitatively using intersection over union (IoU) and the Dice coefficient. Results show that our method, 
without requiring manual annotation, has achieved a segmentation performance comparable to a model trained 
with full supervision (mean Dice 0.914 vs 0.916).   

1. Introduction 

MRIs are widely used in the clinic for the diagnosis of degenerative 
lumbar diseases (Benneker et al., 2005; Cheung et al., 2019; Jensen 
et al., 1994; Lai et al., 2021a, 2021b; Pfirrmann et al., 2001). Since an 
MRI allows the visualization of the 3D structure of soft tissues including 
intervertebral discs (IVD) and the spinal canal (SC) (Fig. 1 A and B), it is 
the gold standard for the assessment of IVD herniation (Benneker et al., 
2005; Pfirrmann et al., 2001) and spinal stenosis (Cheung et al., 2019; 
Lai et al., 2021a, 2021b). Currently, analysis of lumbar MRIs relies 
heavily on the experience and subjective judgment of specialists, which 
makes the process laborious and potentially inaccurate with inevitable 
interrater variations. Thus, automated and objective lumbar MRI 

assessments are highly desirable. Semantic segmentation is important 
for auto-analysis of lumbar MRIs as it provides the locations and 
pixel-wise anatomical information of spinal tissues, which serve as 
precursors for further pathology and disease progression predictions. 

Conventional semantic segmentation methods for lumbar MRI are 
rule-based and based on graphical and anatomical priors of target tissue 
(Carballido-Gamio et al., 2004; Egger et al., 2012; He et al., 2017; 
Michopoulou et al., 2009; Neubert et al., 2012). Pre-determined tem
plates, detectors, and rules are manually designed for the segmentation 
task. However, these rule-based methods are not robust against the 
highly variable image features in MRI caused by systematic and/or in
dividual deviations (Cheng and Halchenko, 2020). The systematic de
viation is usually caused by different MRI protocols, equipment settings, 
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and human operations, which are common when MRIs are obtained 
from different institutions. The individual deviation is usually caused by 
underlying pathologies, such as shape and alignment deformity, which 
are random and vary widely between individuals. Several examples of 
image feature variation (Fig. 1C and D), including shape distortion, low 
pixel intensity, low contrast, unclear edges, and noise, can be observed. 
These rule-based methods can detect approximate tissue locations but 
often fail to obtain accurate shape information. As a result, they are not 
suitable to be used directly in clinical practice. Furthermore, these 
rule-based methods are usually designed based on specific tissue, thus 
they can only segment a single tissue. Multi-tissue segmentation is 
important considering that clinical diagnosis often requires a compre
hensive analysis of multiple tissues (Lai et al., 2021a, 2021b; Pfirrmann 
et al., 2001). 

Recently, with the rapid development of convolutional neural net
works (CNN), learning-based methods have achieved remarkable per
formance in semantic segmentation. For medical images, a CNN model 
trained with full pixel-wise annotation (full-supervision) can obtain 
accuracy comparable to clinical specialists (Lu et al., 2018; Ronneberger 
et al., 2015; Zhou et al., 2019). However, the required manual annota
tion is extremely laborious and time-consuming, which makes 
full-supervision costly and large-scale annotated datasets scarce. To 
address this limitation, weakly-supervised methods were developed. 
Weakly-supervised methods train models with weak annotations (Ker
vadec et al., 2019, 2020; Qu et al., 2020; Rajchl et al., 2016; Valvano 
et al., 2021; Yoo et al., 2019), which can significantly reduce the cost of 
full-supervision; priors of tissues such as pixel value, shape, and size are 
usually utilized to support training. Nevertheless, for 3D images such as 
MRI and CT, weak annotation is still expensive since each slice needs to 
be annotated separately. Furthermore, since the CNN model is 
data-sensitive and vulnerable to the variation of image features, new 
annotations may be required to fine-tune the model for images acquired 
under a different setting, and the well-trained model may also fail to the 
case with underlying pathology. 

We combine rule-based and learning-based methods, and propose a 
hybrid framework for multi-tissue segmentation in lumbar MRI that 
requires no manual annotation. A rule-based method is designed to 
automatically generate the incomplete (in a few MRI slices) and 

inaccurate (missing and location deviation) weak annotation. It first 
identifies approximate tissue locations and a rough spinal region, and 
further determines the initial seed areas. We then propose an iterative 
optimization procedure to train a CNN model with the initial seed areas. 
The CNN model can generate multi-scale feature maps and pixel clas
sification from MRI. The optimization procedure iterates between two 
steps: 1) proposal generation and 2) CNN training. In proposal genera
tion, we integrate the multi-level information within the multi-scale 
feature maps to produce the segmentation proposals based on the seed 
areas. The rule-based proposal fine-tuning is adopted to explicitly 
embed the anatomical prior. In CNN training, a comprehensive loss is 
adopted to optimize the pixel classification and feature distribution of 
feature maps simultaneously based on the proposals. We hypothesize 
that with the iterative optimization procedure, our framework can 
gradually optimize the proposals and CNN model, and the optimized 
CNN model can produce accurate multi-tissue segmentation in the 
lumbar MRI. Since no manual annotation is required in our framework, 
it can automatically fine-tune the CNN model on the target MRI, which 
can effectively improve the robustness of the model against image 
feature variation caused by different image settings and/or underlying 
pathology. Unlike other unsupervised segmentation methods (Harb and 
Knöbelreiter, 2021; Hwang et al., 2019; Mirsadeghi et al., 2021; Van 
Gansbeke et al., 2021) that do not use any annotation in the training 
process, our framework utilizes automatic annotation, which can guide 
the model to generate more semantic features, rather than focusing on 
the shallow image features. 

We aim at establishing and evaluating a hybrid framework, named 
Spine-GFlow, for the robust segmentation of multiple tissues including 
vertebral bodies (VB), IVD, and SC in sagittal lumbar MRI images 
without relying on any manual annotation or human intervention. The 
name is derived because, 1) this framework is specifically tuned based 
on the anatomical knowledge of the spine, which is a complex organ 
consisting of multiple types of tissues; and 2) “G” stands for “Generative” 
as we do not require manual annotations but generating masks auto
matically. Our objectives include: 1) designing a rule-based method that 
automatically generates the weak annotation (initial seed area), 2) 
developing a proposal generation method that integrates the multi-scale 
feature maps and anatomical prior, 3) training the CNN model with a 
comprehensive loss that optimizes the pixel classification and feature 
distribution of feature maps simultaneously, 4) validating our frame
work and comparing with other existing methods. 

2. Related work 

2.1. Rule-based spine/lumbar MRI segmentation 

Rule-based segmentation methods for spine/lumbar MRI are usually 
developed based on the graphical or anatomical priors of specific tissues. 
Normalized cut (NCut) was adopted (Carballido-Gamio et al., 2004) to 
segment VBs from midline sagittal spine MRIs. A multi-feature and 
adaptive spectral segmentation was proposed (He et al., 2017) to 
segment spinal neural foramina within preselected ROIs. A 
statistics-based method was proposed (Neubert et al., 2012) to segment 
IVD and VB with statistical shape analysis and registration of grey level 
intensity profiles. An atlas-based segmentation method for IVD that 
relied on manually-designed templates was proposed (Michopoulou 
et al., 2009). Shape information was utilized (Egger et al., 2012) to 
produce the segmentation of VB, which relied on manually selected seed 
points for initialization. All rule-based methods above could only pro
duce the segmentation of one kind of tissue at a time, and modification 
was required to transfer these methods to different tissues. Additionally, 
some methods required human intervention to guide segmentation 
(Egger et al., 2012; He et al., 2017). 

Fig. 1. A and B present an example of a sagittal lumbar MRI that clearly shows 
multiple spinal tissues including vertebral bodies (blue), intervertebral discs 
(green), and the spinal canal (orange). C illustrates serious shape distortion of 
an intervertebral disc (red) due to disc degeneration. D presents an MRI with 
low image quality including low pixel intensity, low contrast, unclear edges, 
and noise. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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2.2. Weakly-supervised segmentation 

Training a model for a segmentation task with weak annotations 
such as image tag (Pathak et al., 2015), bounding boxes (Dai et al., 2015; 
Khoreva et al., 2017; Kulharia et al., 2020; Lee et al., 2021; Song et al., 
2019), scribbles (Lin et al., 2016; Tang et al., 2018), and points (Bear
man et al., 2016) is an attractive problem. A key idea for 
weakly-supervised segmentation is to integrate the priors about the 
object (shape, size, relative location, etc.) and image (color, texture, 
brightness, etc.) in the training process. BoxSup (Dai et al., 2015) pro
posed an iterative procedure that iterates between proposal generation 
and model training to gradually improve the proposals and the model. 
Previous work (Khoreva et al., 2017) demonstrated that with a carefully 
designed proposal, the model could achieve better performance with 
much fewer training rounds. Attention mechanism was applied (Kul
haria et al., 2020; Song et al., 2019) to guide the model to focus on 
specific areas of objects in the image. Pixel-embedding learning was 
adopted (Kulharia et al., 2020) to generate pixel features with high 
intra-class affinity and inter-class discrimination. Priors of objectness 
filling rates were adopted (Song et al., 2019) to support training. The 
BBAM (Lee et al., 2021) utilized higher-level information to identify 
small informative areas in the image, which served as a 
pseudo-ground-truth for training the segmentation model. The CCNN 
(Pathak et al., 2015) adopted a constrained loss to integrate the priors in 
the training process, which imposed linear constraints on a latent dis
tribution of the model output and trained the model to be close to the 
latent distribution. A generic objectness prior was directly incorporated 
in the loss to train a CNN model with point supervision (Bearman et al., 
2016). Priors of shallow image features were employed in the loss 
function (Lin et al., 2016; Tang et al., 2018) to propagate information 
from scribbles to unmarked pixels. 

2.3. Weakly-supervised segmentation in medical image 

In the scenario of medical images, since full annotation is expensive 
and priors about objects are usually well-established, interest in weakly- 
supervised segmentation is increasing rapidly. DeepCut (Rajchl et al., 
2016) adopted an iterative updating procedure to train a CNN model for 
fetal MRI segmentation based on a bounding box. Prior work (Kervadec 
et al., 2019) introduced a differentiable penalty in the loss function to 
enforce inequality constraints, which was applied to the cardiac, 
vertebral body, and prostate segmentation on MRI images. Kervadec 
et al. (2020) leveraged the tightness prior via constrained loss for the 
segmentation of spinal and brain MRI. Edge information was utilized in 
PseudoEdgeNet (Yoo et al., 2019), which trained the model to segment 
the nuclei with point annotations. Prior work (Qu et al., 2020) generated 
two types of coarse labels from point annotations to train a model for the 
segmentation of histopathology images. In another study (Valvano et al., 
2021), the model was trained with an adversarial game for segmentation 
from scribble annotations in MRI images. Prior work (Ma et al., 2021) 
proposed a two-stage method containing a coarse segmentation and a 
refinement for the segmentation of organs at risk in nasopharyngeal 
carcinoma radiotherapy. Wang et al. (2021) proposed a semi-supervised 
method that utilized two auxiliary tasks to leverage the task-level con
sistency of unlabeled data for segmentation. Hu et al. (2022) proposed 
another semi-supervised method for the segmentation of nasopharyn
geal carcinoma, that adopted a semi-supervised mean teacher model to 
generate the ROI-focused segmentation results. The UG-Net was pro
posed in (Tang et al., 2022) that consisted of a coarse segmentation 
module, an uncertainty guided module, and a feature refinement mod
ule for accurate segmentation on CT and retinal fundus image. The 
MRI-SegFlow (Kuang et al., 2020) also adopted the idea of automatic 
annotation and proposed a two-stage process for VB segmentation 
without relying on manual annotation. It adopted a rule-based method 
to automatically generate the suboptimal region of interest (ROI) and 
trained the CNN model with the suboptimal ROI. However, unlike our 

proposed method, the suboptimal ROI in MRI-SegFlow was not further 
optimized with the CNN training process. Besides, the rule-based 
method of MRI-SegFlow required further modification to transfer to 
other tissues. 

3. Methodology 

3.1. Overview of Spine-GFlow 

The overall framework of our Spine-GFlow is illustrated in Fig. 2A. A 
rule-based method is first applied on the MRI image E0, which utilizes 
anatomical priors of tissue including texture, relative location, and size, 
to detect the approximate tissue locations and a rough spinal region. For 
each tissue, its locations are only detected in its midline sagittal slices. 
The detection result is utilized to initialize the seed areas Ψ, and the 
initial seed areas are served as the automatic weak annotation of our 
framework. For each tissue, the initial seed area consists of small 3D 
neighborhoods around the tissue locations, which are not necessarily in 
the same slice due to potential scoliosis (Fig. 2 B). The initial seed area of 
the background is determined according to the rough spinal region. 
More details about the rule-based seed area initialization will be dis
cussed in Section 3.2. 

Further, the MRI image E0 is fed into a CNN model that can generate 
multiple pixel-wise feature maps, E1, …, EM, with different scales. The 
proposal generation method integrates the MRI image E0, multi-scale 
feature maps, E1, …, EM, and seed areas Ψ to generate the segmenta
tion proposals Ω. Each proposal consists of pixels belonging to a specific 
tissue or background, and pixels that are not in any proposals are 
defined as ambiguous pixels. The seed areas are also updated for the next 
iteration of proposal generation, which expand to adjacent slices and get 
closer to the proposals during the updating (Fig. 2 B). More details about 
proposal generation will be discussed in Section 3.3. 

Based on the proposals, a comprehensive loss is calculated to train 
the CNN model, which will be discussed in detail in Section 3.4. Only 
pixels within the proposals are involved in CNN training, and ambiguous 
pixels are ignored. The proposal generation and CNN training are con
ducted iteratively. In each iteration, the MRI image is first fed into the 
CNN model, which will produce multi-scale feature maps. Then, based 
on the feature maps, the proposals are generated, which are further used 
to calculate the comprehensive loss for CNN training. The optimized 
CNN model can produce the feature maps for better proposal generation 
in turn. 

In the following statement, (u, v) represents the 2D coordinates of a 
pixel in a 2D image, and p = (x, y, z) represents the 3D coordinates of a 
pixel in a 3D scan, where z is the index of the slice. Let t = 0,1, 2,3 
represent the background, VB, IVD, and SC. 

3.2. Rule-based initialization 

We adopt a rule-based method to generate the initial seed areas for 
VB, IVD, SC, and background. The VB area is identified first via gradient 
thresholding, size selection, and location selection, which determines 
approximate VB locations as well as a rough spinal region. Then, the IVD 
and SC are localized based on their relative location to VB. Further, the 
seed areas are initialized according to the tissue locations and rough 
spinal region. 

In gradient thresholding, the normalized image gradient gn and 
amplified image gradient ga are defined as: 

gn(u, v) = g(u, v)/ave(u, v) (1)  

ga(u, v) = g(u, v) ∗ ave(u, v) (2)  

where g(u, v) is the image gradient magnitude calculated with a Sobel 
operator, and ave(u, v) is the average pixel value in the 3 × 3 neigh
borhood at (u, v). Considering the whole MRI scan as a 3D volume, we 
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calculate the gn and ga in transverse, coronal, and sagittal views sepa
rately. The normalized and amplified gradients of 3D volume, Gn and Ga, 
are the pixel-wise maximum of gn and ga in three views, respectively 
(Fig. 3 B and C). The potential VB area is defined as: V = {p : Gn(p) < Tn,

Ga(p) < Ta}, where Tn and Ta are two threshold values (Fig. 3 D). 
The potential VB area is further processed via size selection and 

location selection (Fig. 3 E and F). We first consider the potential VB area 
as several 2D connected components (CCs) in each slice and find the 
minimum bounding rectangle (MBR) for each 2D CC. We measure the 

height, width, and aspect ratio of each MBR and remove CCs whose 
measurements are out of a certain range. Then, the processed VB area is 
treated as several 3D CCs in an MRI scan. For each 3D CC, we measure its 
thickness (i.e., how many slices it spans) and select those with the 
requested thickness. The midline slice of each selected 3D CC is pro
jected onto one image and morphological closing using a square kernel 
ker1 with a size of sker is applied. The morphological closing can merge 
VB projections and isolate non-VB projections. We remove all 3D CCs 
corresponding to isolated projections, and the remaining CCs are 

Fig. 2. A presents the overall framework of our proposed 
Spine-GFlow. Seed areas are first initialized with a rule- 
based method. In the iterative optimization procedure, 
the proposals are generated based on the MRI image, pixel- 
wise feature maps, and seed areas. The seed areas are 
updated for the next iteration. The generated proposals are 
further used to calculate a comprehensive loss to train the 
CNN model. An example of the initial seed areas and seed 
areas after 1st iteration is shown in B (blue: VB, green: IVD, 
red: SC, white: background), which shows that the initial 
seed areas are only in a few slices that are not necessarily 
the same. The seed areas expand to adjacent slices and get 
closer to the proposals during the updating. (For interpre
tation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   

Fig. 3. The rule-based seed area initialization. A presents an MRI, whose Gn and Ga are presented in B and C. D is the potential VB area V. E and F illustrate the size 
and location selection on V, and the white area in E and F represents the selection result. G presents center locations of tissues. H shows the projection of rough spine 
area P and the initial seed area of the background Ψ0

0. ker1, ker2, and ker3 are 3 kernels for location selection and determination of the rough spinal region. 
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denoted as V∗. 
The tissue locations lt are determined based on V∗. We find the MBR 

for the midline slice of each 3D CC in V∗. For each VB, the center location 
l1 = (x1, y1, z1) and width w1 are measured from the MBR. Further, the 
center locations of IVD l2 and SC l3 are determined by: 

ln
2 =

( (
xn

1 + xn+1
1

)/
2,
(
yn

1 + yn+1
1

)/
2,
(
zn

1 + zn+1
1

)/
2
)

(3)  

ln
3 =

(
xn

1 − α ∗ sinθn ∗ wn
1, y

n
1 + α ∗ cosθn ∗ wn

1, zn
1

)
(4)  

where θn = arctan ((yn+1
1 − yn− 1

1 )/(xn+1
1 − xn− 1

1 )), α is a constant which is 
set to 0.80, and (xn

1, yn
1, zn

1) and (xn±1
1 , yn±1

1 , zn±1
1 ) are the center locations 

of three adjacent VBs (Fig. 3G). 
The initial seed areas Ψ0

t of VB, IVD, and SC are defined as 3D 
neighborhoods at corresponding center locations. To determine the 
initial seed area of background Ψ0

0, we project the midline slice of each 
3D CC in V∗ onto one image and apply the morphological dilation to 
generate a rough spinal region P. The morphological dilation takes num1 
and num2 iterations with the kernel ker2 and ker3, respectively. Let the 
location of the lowest VB in V∗ be lmax

1 = (xmax
1 , ymax

1 , zmax
1 ), while Ψ0

0 is 
defined as: Ψ0

0 = {p|(x, y) ∕∈ P, x < xmax
1 } and is the same in each MRI 

slice (Fig. 3 H). The specific configuration of rule-based initialization is 
described in Section 4.2. 

3.3. Proposal generation 

Unlike most iterative optimization methods, which generate pro
posals based on CNN output, our framework combines different levels of 
information by integrating multi-scale feature maps in proposal gener
ation. Inspired by Segsort (Hwang et al., 2019), a clustering-based 
method is applied on each feature map first to divide pixels into 
several clusters, and each pixel cluster is further decomposed into 
several CCs. Specific CCs are selected according to each seed area and 
assembled into the corresponding proposal, which is further fine-tuned 
with several rule-based operations to explicitly embed the anatomical 
prior. Finally, the seed areas are updated based on the proposals and 
pixel clustering results for the next iteration of proposal generation. 

3.3.1. Clustering-based pixel division 
We adopt the k-means algorithm for pixel clustering, which itera

tively conducts the assignment and update steps. In the assignment step, 
each pixel is assigned to the cluster with the most similar mean feature. 
The assignment step produces a set of pixel clusters C (Fig. 4 C), which is 
defined as: 

Ck =
{

pi : ‖ei − ρk‖2 ≤
⃦
⃦ei − ρj

⃦
⃦

2 ∀j, 1 ≤ j ≤ K
}

(5)  

where ei is the feature of pixel pi, ρk is the mean feature of Ck, and K is the 

number of total pixel clusters. In the update step, the mean feature of 
each pixel cluster is calculated as: 

ρk =
1

|Ck|

∑

pi∈Ck

ei (6)  

where |Ck| is the number of pixels in Ck. The mean feature is initialized 
with K randomly selected pixel features from the feature map, and the 
clustering stops after 10 iterations. Formally, we define the pixel clus
tering process on feature map E as: 

Clu(E) = {Ck} (7) 

We conduct the pixel clustering on the original MRI E0 (Fig. 4 A) and 
the multi-scale feature maps, E1, …, EM, (Fig. 4 B), generated by the 
CNN model, individually. For E0 = {vi}, vi represents the pixel value of 
pi, which is the feature with the smallest scale. For Em = {ei}m(m ≥ 1), 
the feature of each pixel is normalized as ẽi = ei/‖ei‖ before clustering. 
Since the location of each pixel is not involved in the clustering process, 
each pixel cluster may not be spatially aggregated, which can be rep
resented as Ck =

⋃
ncck,n, where cck,n is the 2D CC in Ck. Further, pixels in 

the MRI scan can be divided into multiple 2D CCs (Fig. 4 D) based on the 
clustering result of E. Formally, we define the pixel division process as: 

Div(E) = {cck,n}

3.3.2. Pixel selection 
The 2D CCs in the pixel division result of each feature map are 

Fig. 4. The clustering-based pixel division. A and B present an MRI patch and one of its feature maps generated by the CNN model. C is the clustering result of the 
feature map, and D is the pixel division based on the clustering result. 

Fig. 5. The pixel selection process. The 2D CCs that overlap with the seed areas 
are selected and assembled. The intersections of all selection results derived 
from E0, …, EM are further processed with the rule-based fine-tuning to 
generate the final proposals. 
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selected according to the seed areas Ψt (Fig. 5). Specifically, we select 
and assemble the CC that overlaps with Ψt. The selection process is 
defined as: 

Sel
( {

cck,n
}
,Ψt

)
=

⋃

cck,n∩Ψt∕=∅
cck,n (8)  

and is conducted on the pixel division result of original MRI E0 and 
feature maps, E1, …, EM, individually, and the proposals Ωt are defined 
as the intersections of all selection results: 

Ωt =
⋂M

m=0
Sel(Div(Em),Ψt ) (9) 

The proposals are further fine-tuned with three rule-based 
operations:  

(1) 3D Morphological Closing: Considering the tissue should be solid 
in an MRI scan, we apply 3D morphological closing on the pro
posals to remove any potential small inner cavities.  

(2) 3D Morphological Opening: Since the tissue has relatively fixed 
positions and no drastic shape variation in adjacent slices, we 
apply 3D morphological opening on the proposals to remove 
structures with insufficient thickness.  

(3) Exclusivity: Each pixel can only be in one proposal. If a pixel 
belongs to more than one proposal, it will be removed from all 
proposals. 

3.3.3. Seed area updating 
To update the seed area of each tissue, we first determine the 

dominant pixel cluster D for each proposal based on the clustering re
sults of feature maps. We select the pixel cluster from the clustering 
result of each feature map that contains the most pixels in the proposal. 
The dominant pixel cluster is the intersection of all selected pixel clus
ters, which is defined as: 

Dt =
⋂M

m=1
argmax

Ck∈Clu(Em)

|Ck ∩ Ωt| (10) 

Note that only the feature maps generated by CNN model are uti
lized, and the original image E0 is not involved in the determination of 
dominant pixel cluster. In each round of updating, the seed area will 
expand to adjacent slices. Let pixel p = (x, y, z) and its slice neighbor
hood snp be defined as snp = {(x,y,z ± 1)}. Let the expanded part of seed 
area Ψ∗

t be defined as Ψ∗
t = {p : p ∈ Dt , p ∕∈ Ωt , snp ∩ Ωt ∕= ∅}. The 

expanded part covers the pixels from the dominant pixel cluster whose 
slice neighborhood overlaps with the proposal. The seed area is then 
updated as (Fig. 6): 

Ψt
r+1 = (Dt

r ∩ Ωt
r) ∪ Ψ∗

t
r
∪ Ψt

r (11)  

where r represents the number of iterations. For the background, the 
seed area is simply updated as: 

Ψ0
r+1 = Ω0

r (12)  

3.4. CNN model and training 

3.4.1. CNN architecture 
The CNN model in our framework adopts the U-Net+ + (Zhou et al., 

2019) as the backbone, which can generate multi-scale pixel-wise 
feature maps from input MRI images. As illustrated in Fig. 7, the CNN 
model can generate M feature maps, E1, …, EM, where M is determined 
by the number of levels in the U-Net+ +. All feature maps are concat
enated and further processed by two convolutional layers (conv-layers) 
with a kernel size of 1 × 1 and a softmax layer, which produce the pixel 
classification Y. 

3.4.2. Comprehensive loss 
A comprehensive loss is calculated based on the proposals and con

sists of the pixel classification loss (PCL) and feature distribution loss 
(FDL) (Fig. 7) to optimize the final output, that is the pixel classification, 
and pixel-wise feature maps generated by the CNN model simulta
neously. The PCL introduces the penalization in the pixel classification 
Y = {yi} generated by the CNN model to optimize the model output. For 
proposal Ωt , the PCL is defined as: 

PCL(Ωt) =
1

|Ωt|

∑

pi∈Ωt

ce(yi, ŷi) (13)  

where yi and ̂yi are the CNN classification and ground truth of pi and ce()
is the cross entropy. 

To optimize the pixel feature distribution of the feature maps, 
beyond the conventional cross entropy PCL, we also introduce the FDL, 
which encourages the CNN model to generate homogeneous features for 
pixels from the same proposal, and inhomogeneous features for pixels 
from different proposals. For the feature map Em = {ei}m(m ≥ 1), the 

Fig. 6. The seed area updating. The dominant pixel cluster is first determined 
based on the clustering results of feature maps, Clu(E1), …, Clu(EM), and 
proposal Ωr . The slice expanded part is further determined. The updated seed 
area is the union of previous seed area, slice expanded part, and intersection of 
dominant pixel cluster and proposal. 

Fig. 7. The CNN model and comprehensive loss. Our CNN model adopts the U- 
Net+ + (Zhou et al., 2019) as the backbone to generate multi-scale feature 
maps, which are further concatenated and processed by two convolutional 
layers and a softmax layer to generate pixel classification. The comprehensive 
loss consists of the pixel classification loss (PCL) and feature distribution loss 
(FDL), which optimize the pixel classification and feature distribution of feature 
maps, respectively. 
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FDL of tissue proposal Ωt(t ∈ [1, 3]) is defined as: 

FDL(Em,Ωt) = −
1

|Ωt|

∑

pi∈Ωt

log
exp(φt

Tẽi
)

∑

s∈[1,3], s∕=t
exp(φs

Tẽi
) (14)  

where ẽi = ei/‖ei‖ is the normalized pixel feature and φt = (
∑

pi∈Ωt
ẽi)/

⃦
⃦
⃦
∑

pi∈Ωt
ẽi

⃦
⃦
⃦ is the mean feature of Ωt. The numerator encourages each 

pixel feature to be close to the mean feature of its own proposal, and the 
denominator pushes each pixel feature away from the mean feature of 
other proposals. The FDL of background proposal Ω0 is defined as: 

FDL(Em,Ω0) = −
1

|Ω0|

∑

pi∈Ω0

log
1

∑

s∈[1,3]
exp(φs

Tẽi
) (15) 

Due to the diversity of pixel features in the background, we do not 
calculate the mean feature for Ω0 and the FDL only encourages the pixel 
feature to be far away from the mean feature of all tissue proposals. 

Only pixels within the proposals are involved in CNN training and 
ambiguous pixels are ignored. Furthermore, the average loss is calcu
lated over pixels in each proposal separately, which prevents the weight 
of the small-size tissue from being diluted. The final loss is calculated as: 

Loss =
∑3

t=0

∑M

m=1
at,m × FDL(Em,Ωt) +

∑3

t=0
bt × PCL(Ωt) (16)  

where at,m and bt are the weights for different losses. 

3.4.3. Training protocol 
We train the CNN model with small image patches instead of the 

whole MRI to make the model focus on the area covering the tissue 
proposals. The patches are randomly selected from the MRI slices, where 
the proposals of all tissues appear. Overlapping or repetition of selected 
patches is acceptable. During proposal generation, to provide the feature 
map of the whole MRI scan, we uniformly select patches with a constant 
stride from the input MRI and merge the feature map of each patch 
generated by the CNN model. 

In our framework, the CNN model can be trained with different 
protocols. First, when a set of unlabeled MRI scans are available, the 
CNN model can be trained with patches selected from different MRI 
scans. The FDL enforces the model to extract similar features for pixels of 
the same tissue in different MRI scans, which helps the model learn 
general features. After each iteration of training, proposals of all MRI 
scans are updated simultaneously based on the trained model. We call 
this training protocol holistic training. The unlabeled MRI scans can be 
simply collected as a clinical routine. Since no manual annotation is 
required, our framework can provide another CNN training protocol 
called individual training, where the CNN model is trained on the target 
MRI directly. In individual training, patches are selected from the target 
MRI only, which makes the model adapt to potential feature variations 
in each MRI scan and allows our framework to boot up with only one 
MRI scan. To obtain better performance, our framework can take 
advantage of both holistic and individual training. The CNN model is 
first trained with a set of prepared MRI scans and further fine-tuned on 
the target MRI. Much fewer patches are used in the fine-tuning process 
compared with only individual training. 

4. Dataset and implementation details 

4.1. Dataset 

4.1.1. HKDDC 
The expert anatomically annotated Hong Kong Disc Degeneration 

Cohort (HKDDC) dataset (Samartzis et al., 2012) included 40 
T2-weighted MRI scans collected from 40 different subjects. This was a 
population-based dataset with subject recruitment from open adver
tisement. The MRI scans were obtained via 3 different MRI machines 

with resolutions from 448 × 448 to 512 × 512. The detailed composi
tion of MRI scans in the dataset is presented in Table 1. Each MRI scan 
contained at least 5 lumbar vertebrae from L1 to L5, and there are at 
least 7 slices in each scan containing annotated spinal structures. For 
each scan, the pixel-wise manual annotations of VB, IVD, and SC were 
provided (from L1 to S1). All annotation work was completed by three 
readers who are medically trained, with a fourth reader (a spine surgeon 
with more than 20 years of clinical experience) to compare the outcomes 
and confirm precision as well as consistency (the pixel-wise agreement 
of annotation is 98%). The MRI scans are split into 20:10:10 as the 
training, validation, and testing set. 

4.1.2. IVDM3Seg 
The MICCAI 2018 Challenge on Intervertebral Disc Localization and 

Segmentation (IVDM3Seg) dataset contains 16 MRI cases collected from 
8 subjects in two stages. Each case consists of four aligned high- 
resolution 3D MRI scans with different modalities, including in-phase, 
opposed-phase, fat, and water, as well as the manually labeled binary 
mask for IVD. The MRI was scanned with a 1.5-Tesla MRI scanner of 
Siemens using Dixon protocol. Each MRI scan has a size of 
256 × 256 × 36. More detailed information about the IVDM3Seg data
set could be found on the official website (https://ivdm3seg.weebly. 
com). For each MRI scan, we only focus on the area lower than the T11 
vertebra (lumbar region). 

4.2. Implementation details 

4.2.1. Rule-based initialization configuration 
The rule-based initialization was experimentally configured ac

cording to the training set. For the HKDDC dataset, in the gradient 
threshold, we first calculate the normalized and amplified image gra
dients on 5 cases randomly selected from the training set and experi
mentally determine the threshold values that can the distinguish 
potential VB area. The threshold values for the normalized and ampli
fied image gradients Tn and Ta were set as 2.5 and 0.2. In size selection, 
we calculated the minimum (min) and maximum (max) for dimensions 
of 10 VBs randomly selected from the training set and determined the 
requested range as [0.7 × min, 1.3 × max]. Thus, the requested range 
for height, width, aspect ratio, and thickness were [20,70], [20,70], 
[0.5,2], and [5,15], respectively. In the morphological closing of loca
tion selection, the kernel size wker was 25. The sizes of 3D neighborhoods 
in initial seed areas of VB, IVD, and SC were set as 7 × 7 × 3, 3 × 3 × 3, 
and 3 × 3 × 1. The iteration numbers of the morphological dilation for 
the rough spinal region, num1 and num2, were set as 35 and 25. 

For the IVDM3Seg dataset, the image intensity and size were 
significantly different from the clinical T2-weighted MRI of the HKDDC 
dataset, thus minor adjustments were required in the gradient threshold 
and size selection. The normalized image gradient and the amplified 
image gradient were calculated on fat modality and on opposed-phase 
modality. The threshold values Tn and Ta were set as 4.0 and 0.1. In 
size selection, the requested range for height, width, and thickness were 
set as [10,50], [15,50], and [10,30]. The iteration numbers num1 and 
num2 were 20 and 5. 

Table 1 
Composition of MRI Scans in the Dataset.  

Institution MRI Machine Scan 
Number 

Image 
Number 

Gender Age 

Hong Kong 
Sanatorium 
Hospital 

GE 
Healthcare 
Signa  

10  110 60 % F 47.3 
± 7.4 

Siemens Trio  12  180 50 % F 50.4 
± 8.8 

St. Teresa’s 
Hospital 

Siemens 
Prisma  

18  306 50 % F 52.7 
± 8.3  
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4.2.2. Proposal generation configuration 
For the k-means algorithm, the number of pixel clusters, K, was set as 

10. The kernel for the 3D morphological closing and opening in proposal 
fine-tuning was a cuboid with a size of 5 × 5 × 2 and 1 × 1 × 3. The 3D 
morphological opening was not applied in the first iteration. 

4.2.3. CNN architecture and training configuration 
A UNet+ + with 4 levels was adopted in the CNN model that could 

generate 3 pixel-wise feature maps with different scales. All conv-layers 
in the model had 64 filters except the output layer, which had 4 filters. 
For the HKDDC dataset, the input of the CNN model was the patch of raw 
clinical MRI. For the IVDM3Seg dataset, the input of the CNN model was 
the patch of the concatenation for 4 modalities of MRIs. 

We evaluated the framework with 3 different CNN training pro
tocols: (1) only holistic training (HT), (2) only individual training (IT), 
(3) both holistic and individual training (HT+IT). For HT, the CNN 
model was trained with only the training set and applied on the target 
MRI directly without any fine-tuning. The training took 15 iterations. 
For each iteration, 5120 patches were selected from each MRI. For IT, 
the CNN model was trained from scratch based on only the target MRI, 
which also took 15 iterations, and 5120 patches were selected from the 
target MRI for each iteration. For HT+IT, the CNN model was first 
pretrained on the training set with 15 iterations, and for each iteration, 
3840 patches were selected from each MRI. The CNN model was further 
fine-tuned on each target MRI with 8 iterations. For the first 7 iterations, 
512 patches were selected from the target MRI, and for the last iteration, 
3072 patches were selected. For all training protocols, all weights of the 
loss were set as 1. The mini-batch strategy with a batch size of 16 was 
adopted. Adam was used as the optimizer with an initial learning rate of 
0.0006. 

4.3. Evaluation metrics 

Two different metrics were adopted to quantitatively evaluate the 
segmentation performance of our Spine-GFlow: Intersection over Union 
(IoU) and the Dice coefficient (Dice), which were calculated as follows: 

IoU =
TP

TP + FP + FN
(17)  

Dice =
2TP

2TP + FP + FN
(18)  

where TP, FP and FN denoted the number of true positive, false positive, 
and false negative pixels in the segmentation results respectively. The 
mean IoU and mean Dice were defined as the average IoU and Dice of all 
tissues. 

5. Results 

5.1. Multi-tissue segmentation 

The quantitative evaluation results of the multi-tissue segmentation 
performance achieved by our Spine-GFlow on the HKDDC dataset were 
shown in Table 2, and Table 3 showed the IVD segmentation result on 

the IVDM3Seg dataset. We compared the framework with 3 different 
CNN training protocols, including HT, IT, and HT+IT. Furthermore, we 
also compared our method with the model trained with the constrained 
losses in (Kervadec et al., 2019), the automatic annotation of 
MRI-SegFlow (Kuang et al., 2020), and the full supervision. The con
strained losses (Kervadec et al., 2019) trained the model using small 
regions within the ground-truth mask, which were similar to the initial 
seed areas used in our framework. We generated the weak annotation for 
constrained losses according to (Kervadec et al., 2019). The 
MRI-SegFlow (Kuang et al., 2020) provided a rule-based method to 
generate automatic annotation of VB, and we modified the parameters 
and transferred it to IVD and SC. For IVDM3Seg dataset, we also 
compared with the best result reported in (Zheng et al., 2017) (achieved 
by team UNILJU), and the result achieved by IVD-Net (Dolz et al., 2018) 
that was a state-of-the-art method for IVD segmentation. For all training 
strategies, the CNN model adopted the same network architecture. 

The results showed that our Spine-GFlow consistently outperformed 
the model trained with constrained losses (Kervadec et al., 2019) and 
MRI-SegFlow (Kuang et al., 2020) for all tissues. We conducted the t-test 
on the mean Dice of HKDDC dataset and IVD Dice of IVDM3Seg dataset 
achieved by our method and constrained losses as well as MRI-SegFlow. 
On HKDDC dataset, the p-values were 0.00009 for constrained losses 
and 0.006 for MRI-SegFlow. On IVDM3Seg dataset, the p-values were 
0.0007 for constrained losses and 0.01 for MRI-SegFlow. HT and IT 
achieved similar overall performance. For VB, HT produced 1.7 % 
higher IoU and 1.1 % higher Dice than IT on the HKDDC dataset. For 
IVD, IT achieved 1.6 % higher IoU and 0.9 % higher Dice than HT on the 
HKDDC dataset, as well as 2.0 % higher IoU and 1.1 % higher Dice on the 
IVDM3Seg dataset. For SC, there was no significant difference between 
these two protocols. By combining HT and IT, our framework could 
further improve segmentation accuracy for all tissues. Moreover, the 
Spine-GFlow with HT+IT obtained performance comparable to the 
model trained with full supervision. We achieved only 2 % lower Dice 
for SC, and even 1 % and 0.4 % higher Dice for IVD and VB on the 
HKDDC dataset. On the IVDM3Seg, the Dice of our Spine-GFlow was 
only 0.017 and 0.018 lower than two state-of-the-art fully supervised 
methods, UNILJU (Zheng et al., 2017) and IVD-Net (Dolz et al., 2018). 

Fig. 8 visually presented several multi-tissue segmentation results on 
the HKDDC dataset. All segmentation results in Fig. 8 were the original 
outputs of the CNN models trained with different methods and no 
further post-processing was applied. Fig. 8 A and B illustrated the initial 
seed areas and multi-tissue segmentations, respectively, produced by 

Table 2 
Evaluation of Multi-tissue Segmentation Performance on HKDDC Dataset.  

Method IVD VB SC 

IoU Dice IoU Dice IoU Dice 

Constrained Losses 0.745 ± 0.036 0.854 ± 0.026 0.801 ± 0.036 0.889 ± 0.022 0.794 ± 0.035 0.885 ± 0.022 
MRI-SegFlow 0.806 ± 0.036 0.892 ± 0.025 0.829 ± 0.021 0.907 ± 0.012 0.782 ± 0.034 0.877 ± 0.022 
Spine-GFlow (HT) 0.830 ± 0.035 0.907 ± 0.021 0.860 ± 0.029 0.925 ± 0.017 0.809 ± 0.045 0.894 ± 0.029 
Spine-GFlow (IT) 0.846 ± 0.029 0.916 ± 0.017 0.843 ± 0.041 0.914 ± 0.025 0.807 ± 0.051 0.893 ± 0.034 
Spine-GFlow (HT+IT) 0.847 ± 0.028 0.917 ± 0.016 0.866 ± 0.022 0.928 ± 0.012 0.811 ± 0.040 0.896 ± 0.026 
Full Supervision 0.830 ± 0.039 0.907 ± 0.024 0.859 ± 0.041 0.924 ± 0.024 0.846 ± 0.026 0.916 ± 0.015  

Table 3 
Evaluation of IVD Segmentation Performance on IVDM3Seg Dataset.  

Method IVD IoU IVD Dice 

Constrained Losses 0.773 ± 0.015 0.872 ± 0.013 
MRI-SegFlow 0.783 ± 0.021 0.878 ± 0.017 
Spine-SegLoop (HT) 0.792 ± 0.017 0.884 ± 0.014 
Spine-SegLoop (IT) 0.812 ± 0.018 0.895 ± 0.015 
Spine-SegLoop (HT+IT) 0.820 ± 0.015 0.901 ± 0.013 
Full Supervision 0.845 ± 0.015 0.916 ± 0.013 
UNILJU – 0.918 ± 0.021 
IVD-Net – 0.919 ± 0.018  
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our method on an MRI scan displaying alignment deformity. The result 
showed that initial seed areas were presented in different slices since the 
midline sagittal slices of each tissue were different. Our method could 
adapt the alignment deformity and produce accurate segmentation on 
different slices. Fig. 8 C-F visually compared the segmentation on MRI 
patches produced by different methods. It showed that our framework 
could identify the shape detail, such as corners and potential deformity, 
better than the model trained with constrained losses (Fig. 8 C) and 
reduce the noise and shape distortion compared with MRI-SegFlow 
(Fig. 8 D). Compared with the framework using only IT, the frame
work with both HT and IT could reduce noise in the result (Fig. 8 D). For 
some extreme variations in image features caused by pathologies, such 
as the Marrow change (Fig. 8 E), our framework with the IT could adapt 
better than other methods and produce a more accurate result. More
over, for the image with low contrast (Fig. 8 F), our framework with the 
IT also showed high robustness. 

5.2. Ablation study 

To further investigate the effect of different components in our 
framework, the ablation study was conducted on the HKDDC dataset. 

In our framework, the proposals were generated based on multi-scale 
feature maps produced by the CNN model. To investigate the effect of 
integrating the multi-level information, we compared a different pro
posal generation strategy adopted by (Rajchl et al., 2016), which pro
duced proposals by applying conditional random field (CRF) on the CNN 
output. For a fair comparison, the generated proposals were further 
fine-tuned with the same rule-based operations in Section 3.3, and the 
CNN model was trained with the same protocol and loss function. We 

denoted this variant as Spine-GFlow (P-). 
Our framework introduced the FDL in the CNN training process in 

addition to the conventional cross entropy PCL to encourage the CNN 
model to extract more discriminative pixel features. To validate the ef
fect of the comprehensive loss, we compared it to the framework where 
the CNN model was trained with only PCL. We kept the rest of the 
framework unchanged and denoted this variant as Spine-GFlow (L-). 

Fig. 9 presented the evolution of segmentation performance during 

Fig. 8. A and B present the initial seed areas and multi-tissue segmentation (blue: VB, green: IVD, red: SC) produced by Spine-GFlow on an MRI scan with alignment 
deformity. C-F are the visual comparisons of multi-tissue segmentation produced by different methods on MRI patches. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. The evolution of segmentation performance (mean Dice) during the 
HT process. 
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the HT process, showing that with multi-scale feature maps and FDL, the 
CNN model of the standard Spine-GFlow was trained more efficiently. 
Without FDL, the CNN model of Spine-GFlow (L-) achieved the same 
learning speed as the standard framework at the beginning of HT; 
however, its performance did not further improve after the 5th iteration, 
and after HT its mean Dice were 1% lower than the standard Spine- 
GFlow. In the Spine-GFlow (P-), the proposals generated based on the 
only model output more significantly reduced the training efficiency of 
the CNN model, and after HT its mean Dice were 4% lower than the 
standard framework. Moreover, as presented in Table 4, after HT and IT, 
the standard Spine-GFlow ultimately obtained better performance than 
the other 2 variants. 

Fig. 10 presented the proposals generated by Spine-GFlow (P-) and 
standard Spine-GFlow in different iterations, which showed that the 
proposals generated with multi-scale feature maps could provide more 
shape details. Furthermore, when the tissue boundary was not clear, 
integrating the multi-scale feature maps could avoid the proposals 
invading the wrong area. 

Fig. 11 presented the pixel clustering result of feature maps gener
ated by the CNN model of Spine-GFlow (L-) and standard Spine-GFlow 
and the corresponding proposals. It demonstrated that the model 
trained with comprehensive loss could generate feature maps whose 
pixel clustering results could better reflect the true spatial distribution of 
different tissues with less noise, especially for feature maps with small 
scales. More specifically, based on the feature maps of the model trained 
with comprehensive loss, most pixels of the same tissue would be 
divided into the same pixel cluster, which could help generate more 
accurate proposals and in turn improve the CNN training process. 

Several rule-based fine-tuning operations were adopted in the pro
posal generation to explicitly embed the anatomical prior, which could 
effectively reduce the error in the proposals and have high robustness 
against the geometry variation caused by tissue deformity. Fig. 12 pre
sented two examples of rule-based fine-tuning for the case with the disc 
bulge (Fig. 12 A) and Schmorl’s node (Fig. 12 B) that showed fine-tuning 
could fill the cavity (Fig. 12 A) and remove the wrong bulge (Fig. 12 B) 
in the proposals. 

Fig. 13 presented several examples of proposals and segmentation 
results produced with the defective initial seed areas. The initial seed 
areas were manipulated with translation and deletion to simulate po
tential defects. The result demonstrated that location deviation did not 
significantly affect the final proposals and segmentation result. The 
partial absence led to missing corresponding tissue in the final proposals 
but had no obvious influence on the segmentation result. 

Fig. 14 presented several examples of seed area initialization on the 
cases with different feature variations. Fig. 14 A and B had the Schmorl’s 
node, and the image contrast was low. Fig. 14 C had the Marrow change, 
and Fig. 14 D had the disc bulging. The result demonstrated that these 
feature variations caused by pathologies and/or image quality did not 
significantly affect the seed area initialization. There might be the 
location deviation (SC in Fig. 14 C) and/or partial absence (SC in Fig. 14 
B) in the initial seed areas, but no mistake (seed area in wrong tissue). 

6. Discussion 

In this paper, we have established a hybrid framework, known as 
Spine-GFlow, for robust multi-tissue segmentation in lumbar MRI 
without requiring any manual annotations. A rule-based method is first 
adopted to automatically generate the weak annotation. It detects the 

approximate tissue locations and rough spinal region, and further de
termines the initial seed areas. For each tissue, the locations are only 
detected in its midline sagittal MRI slices, thus the initial seed area is not 
necessarily in the same slice due to potential alignment deformity, 
which helps the framework adapt to the case with scoliosis. A CNN 
model is developed to generate multi-scale feature maps and pixel 
classifications from the MRI image. A clustering-based method is 
adopted to generate the segmentation proposals based on multi-scale 
feature maps and the seed areas. The proposals are further fine-tuned 
with several rule-based operations to explicitly embed the anatomical 
prior, and the seed areas are updated according to the fine-tuned pro
posals. Next, the CNN model is trained with a comprehensive loss, which 
simultaneously optimizes the pixel classification and feature distribu
tion of feature maps based on the proposals. By iteratively conducting 
the proposal generation and CNN training, we can obtain a CNN model 
for accurate multi-tissue segmentation. Since no manual annotation is 
required in our framework, it can automatically fine-tune the CNN 
model on the target MRI to improve the robustness of the model against 
image feature variation. 

Our Spine-GFlow is an explainable segmentation framework, that 
adopts the attention mechanism in CNN training process, and the 
inference process can be easily interpreted via latent feature space. 
(Yang et al., 2022) The proposal is generated based on the clustering of 
image features and the fine-tuning guided by anatomical prior. It serves 
as a hard attention map for the CNN training process that is meaningful 
both graphically and anatomically. To interpret the segmentation 
generated by our CNN model, we can simply visualize the distribution of 
each pixel feature in both latent feature space and spatial space via 
clustering. As presented in Fig. 11, pixels belonging to the same tissue 
have homogeneous features, while pixels from different tissues have 
inhomogeneous features. 

The CNN training process of our Spine-GFlow enables the data har
monisation of our framework. We train the CNN model with small image 
patches with unified sizes instead of the whole MRI, which can make the 
model focus on the area covering the tissue proposals, and also serve as 
an image-processing-based data harmonisation to standardize different 
shapes of MRIs from different sources. (Nan et al., 2022) In the HT 
process, the mean feature of FDL is calculated on the patches from 
different MRIs, which enforces the model to extract similar features for 
the same tissue of different MRIs. It helps the model learn the 
source-invariant features, then apply these features for the segmentation 
task. (Nan et al., 2022). 

We validate our method on 2 independent datasets: HKDDC (con
taining the MRI scans obtained from 3 different machines) and 
IVDM3Seg. Our framework was quantitatively evaluated with 3 
different CNN training protocols, and compared with a CNN model 
trained with constrained loss (Kervadec et al., 2019), MRI-SegFlow 
(Kuang et al., 2020), and full supervision. The results showed that our 
framework consistently outperforms the constrained loss (Kervadec 
et al., 2019) and MRI-SegFlow (Kuang et al., 2020) for all tissues. The 
significance test demonstrated the performance improvement was sig
nificant. Compared with the constrained loss, our method could produce 
the result with more shape details, which is important for detecting 
potential deformity. Compared with the MRI-SegFlow, since our 
framework can iteratively optimize the proposals for CNN training, our 
CNN model generates more accurate results with less noise. HT obtains 
higher segmentation accuracy on VB than IT, while for the IVD, IT 
performs better. Since the features of VB such as shape and pixel in
tensity are more consistent than those of IVD, the model trained with HT 
performed better given it can learn more general features. Otherwise, for 
IVD, the model trained with IT can adapt to large individual variations 
better than with only HT. By combining HT and IT, our framework can 
further improve accuracy on all tissues and achieve a performance 
comparable with a model trained with full supervision. IT enables the 
CNN model to be further fine-tuned on the target MRI, which can 
improve the robustness of our framework against the drastic feature 

Table 4 
The Ultimate Performance of Three Versions of Spine-GFlow after HT and IT.  

Framework mean IoU mean Dice 

Spine-GFlow (P-) 0.773 ± 0.053 0.870 ± 0.037 
Spine-GFlow (L-) 0.809 ± 0.044 0.894 ± 0.029 
Spine-GFlow 0.841 ± 0.026 0.914 ± 0.015  
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variations caused by pathology or low image quality, such as contrast, 
which helps our method obtain more accurate results than the 
weakly-supervised and supervised methods on cases with these feature 
variations. Since the image feature variations are more likely to appear 
in VB and IVD regions due to the underlying pathologies, such as 
Morrow change and disc degeneration, thus our method can achieve 
better performance in these regions than other methods. The SC has 
more consistent image features across different cases, thus our pipeline 
has less advantage in SC. Besides, the multi-source dataset also 
demonstrated the generalizability of our framework. 

Unlike most iterative optimization methods, which generate pro
posals based on the CNN output, our framework integrates the multi- 
scale feature maps generated by the CNN model for proposal genera
tion. The output of a CNN model trained with incomplete annotation 
usually tends to have smooth contours, and the proposals generated with 
CNN output will lose shape details, especially for tissues with shape 
deformities. Furthermore, since the tissue boundaries are sometimes 

fuzzy, such as the edge between IVD and the background, refining 
methods using low level information such as CRF cannot effectively 
avoid errors, which will significantly reduce the training efficiency of 
the CNN model and its ultimate performance. 

In addition to the conventional cross entropy PCL, we introduce FDL 
for the training of the CNN model. Compared with the model trained 
with only PCL, the model trained with PCL+FDL can generate more 
discriminative feature maps, where features have large similarities and 
differences for pixels belonging to the same and different tissues. For 
feature maps with small scales, this effect of feature aggregation brought 
by FDL is more significant, which can help the clustering-based method 
generate more accurate proposals and in turn improve CNN training. 

We explicitly embed the anatomical prior in the proposal generation 
by applying several rule-based fine-tuning operations that utilize the 3D 
geometry information of adjacent slices. The results show that rule- 
based fine-tuning can significantly improve the accuracy of the pro
posals by reducing the potential cavities and wrong bulges (Fig. 12). As 

Fig. 10. The proposals generated by Spine-GFlow (P-) and standard Spine-GFlow in different iterations.  

Fig. 11. The pixel clustering results of feature maps generated by the CNN model of Spine-GFlow (L-) and standard Spine-GFlow and the corresponding proposals.  
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our rule-based fine-tuning operations are based on the general geometric 
prior of the tissue, which have high robustness against the geometry 
variation in different cases due to the potential deformity. 

Since our rule-based seed area initialization method only detects the 
approximate tissue locations and a rough spinal region, it is robust to the 
image feature variations and can generate satisfactory results for the 
cases with pathologies and/or low image contrast. There might be a 
location deviation and/or partial absence in the initial seed areas, but no 
mistake (Fig. 14). Besides, our framework shows high robustness against 
suboptimal initial seed areas. The results show that neither location 
deviation nor partial absence has a significant effect on the final seg
mentation result. Updating the seed areas can effectively correct loca
tion deviation, and the CNN model can be trained with incomplete 
proposals caused by partial absence. 

In future work, our framework will be extended to handle the seg
mentation of axial lumbar MRI for other spinal tissues such as muscles. 
Moreover, a prospective clinical study at an independent center will be 
conducted to further evaluate the performance and stability of our 
pipeline. 

7. Conclusion 

In this paper, we have introduced a hybrid framework, named Spine- 
GFlow, for robust multi-tissue segmentation in sagittal lumbar MRIs, 
which does not rely on any human intervention and manual annotation. 
We adopted a rule-based method to automatically generate the weak 
annotation for CNN training. We propose a clustering-based method to 
generate the proposals by integrating multi-scale feature maps produced 
by the CNN model, which can produce proposals with shape details. The 
anatomical prior is explicitly embedded via several rule-based proposal 
fine-tuning operations. A comprehensive loss is introduced to simulta
neously optimize the pixel classifications and feature distribution of 
feature maps generated by the CNN model, which significantly improves 
the efficiency of training. Segmentation performance was quantitatively 
validated and compared with other state-of-the-art methods on the 
HKDDC dataset that contains the MRI obtained from 3 different ma
chines, and the IVDM3Seg dataset. The results demonstrate that our 
framework is comparable to a model trained with full supervision. Our 
framework has significant implications for many MRI analysis tasks, 
including pathology detection, 3D reconstruction for further auto- 
diagnosis, and 3D printing. 
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