46 research outputs found

    Unparticle contribution to the hydrogen atom ground state energy

    Get PDF
    In the present work we study the effect of unparticle modified static potentials on the energy levels of the hydrogen atom. By using Rayleigh-Schr\"odinger perturbation theory, we obtain the energy shift of the ground state and we compare it with experimental data. Bounds on the unparticle energy scale ΛU\Lambda_\mathcal{U} as a function of the scaling dimension dUd_\mathcal{U} and the coupling constant λ\lambda are derived. We show that there exists a parameter region where bounds on ΛU\Lambda_\mathcal{U} are stringent, signalling that unparticles could be tested in atomic physics experiments.Comment: 11 pages, 3 figure

    Reply to "Comment on 'Gravitational Pair Production and Black Hole Evaporation'"

    Full text link
    In a recent letter, the authors presented a unified derivation of the electric Schwinger effect and Hawking radiation with an additional radiation component. The approach discloses a radial profile of black hole pair production and traces the emission back to local tidal forces which are independent of the black hole event horizon. It uses an effective action valid to second order in curvature and arbitrary order in proper time. A comment supposed an inconsistency when applying the formula to other cases, i.e. the Schwinger effect with magnetic fields and cosmological particle production. This letter points out that these conclusions are drawn from using the formula outside its range of applicability.Comment: 2 page

    Gravitational Pair Production and Black Hole Evaporation

    Full text link
    We present a new avenue to black hole evaporation using a heat-kernel approach analogous as for the Schwinger effect. Applying this method to an uncharged massless scalar field in a Schwarzschild spacetime, we show that spacetime curvature takes a similar role as the electric field strength in the Schwinger effect. We interpret our results as local pair production in a gravitational field and derive a radial production profile. The resulting emission peaks near the unstable photon orbit. Comparing the particle number and energy flux to the Hawking case, we find both effects to be of similar order. However, our pair production mechanism itself does not explicitly make use of the presence of a black hole event horizon.Comment: 11 pages, 2 figures. To appear in Physical Review Letter

    Probing Quadratic Gravity with the Event Horizon Telescope

    Full text link
    Quadratic gravity constitutes a prototypical example of a perturbatively renormalizable quantum theory of the gravitational interactions. In this work, we construct the associated phase space of static, spherically symmetric, and asymptotically flat spacetimes. It is found that the Schwarzschild geometry is embedded in a rich solution space comprising horizonless, naked singularities and wormhole solutions. Characteristically, the deformed solutions follow the Schwarzschild solution up outside of the photon sphere while they differ substantially close to the center of gravity. We then carry out an analytic analysis of observable signatures accessible to the Event Horizon Telescope, comprising the size of the black hole shadow as well as the radiation emitted by infalling matter. On this basis, we argue that it is the brightness within the shadow region which constrains the phase space of solutions. Our work constitutes the first step towards bounding the phase space of black hole type solutions with a clear quantum gravity interpretation based on observational data.Comment: 18 pages, 6 figure

    A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows

    Get PDF
    We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT

    First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass

    Get PDF
    In this paper we quantify the temporal variability and image morphology of the horizon-scale emission from Sgr A*, as observed by the EHT in 2017 April at a wavelength of 1.3 mm. We find that the Sgr A* data exhibit variability that exceeds what can be explained by the uncertainties in the data or by the effects of interstellar scattering. The magnitude of this variability can be a substantial fraction of the correlated flux density, reaching ∼100% on some baselines. Through an exploration of simple geometric source models, we demonstrate that ring-like morphologies provide better fits to the Sgr A* data than do other morphologies with comparable complexity. We develop two strategies for fitting static geometric ring models to the time-variable Sgr A* data; one strategy fits models to short segments of data over which the source is static and averages these independent fits, while the other fits models to the full data set using a parametric model for the structural variability power spectrum around the average source structure. Both geometric modeling and image-domain feature extraction techniques determine the ring diameter to be 51.8 ± 2.3 μas (68% credible intervals), with the ring thickness constrained to have an FWHM between ∼30% and 50% of the ring diameter. To bring the diameter measurements to a common physical scale, we calibrate them using synthetic data generated from GRMHD simulations. This calibration constrains the angular size of the gravitational radius to be 4.8−0.7+1.4 μas, which we combine with an independent distance measurement from maser parallaxes to determine the mass of Sgr A* to be 4.0−0.6+1.1×106 M ⊙

    Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI

    Get PDF
    The extraordinary physical resolution afforded by the Event Horizon Telescope has opened a window onto the astrophysical phenomena unfolding on horizon scales in two known black holes, M87* and Sgr A*. However, with this leap in resolution has come a new set of practical complications. Sgr A* exhibits intraday variability that violates the assumptions underlying Earth aperture synthesis, limiting traditional image reconstruction methods to short timescales and data sets with very sparse (u, v) coverage. We present a new set of tools to detect and mitigate this variability. We develop a data-driven, model-agnostic procedure to detect and characterize the spatial structure of intraday variability. This method is calibrated against a large set of mock data sets, producing an empirical estimator of the spatial power spectrum of the brightness fluctuations. We present a novel Bayesian noise modeling algorithm that simultaneously reconstructs an average image and statistical measure of the fluctuations about it using a parameterized form for the excess variance in the complex visibilities not otherwise explained by the statistical errors. These methods are validated using a variety of simulated data, including general relativistic magnetohydrodynamic simulations appropriate for Sgr A* and M87*. We find that the reconstructed source structure and variability are robust to changes in the underlying image model. We apply these methods to the 2017 EHT observations of M87*, finding evidence for variability across the EHT observing campaign. The variability mitigation strategies presented are widely applicable to very long baseline interferometry observations of variable sources generally, for which they provide a data-informed averaging procedure and natural characterization of inter-epoch image consistency
    corecore