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In the present work we study the effect of unparticle modified static potentials on the energy levels of 
the hydrogen atom. By using Rayleigh–Schrödinger perturbation theory, we obtain the energy shift of 
the ground state and compare it with experimental data. Bounds on the unparticle energy scale �U as 
a function of the scaling dimension dU and the coupling constant λ are derived. We show that there 
exists a parameter region where bounds on �U are stringent, signaling that unparticles could be tested 
in atomic physics experiments.
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1. Introduction

Unparticle physics is an extension of the Standard Model, con-
sisting in the possibility of having a non-trivial scale invariant, yet 
undiscovered sector of particle physics.

At first sight, unparticles appear as a generalization of neutri-
nos because they share the following properties: scale invariance 
and only very weak interaction with other fields. Neutrinos enjoy 
the first property to a good approximation, although their oscil-
lations disclose a small non-zero mass. The second property is a 
general requirement of any hypothetical particle sector because we 
want it to be, to a certain extent, hidden from current observa-
tions. On closer inspection, however, we find that unparticles differ 
drastically from neutrinos. Since we do not restrict the unparticle 
fields to be massless, we can no longer speak in terms of parti-
cle numbers as in the conventional manner. The unparticle field is 
controlled by a canonical scaling dimension dU which is in general 
a non-integer number. Due to the unusual character, one refers to 
the matter described by such a theory as unlike particles, or unpar-
ticle stuff.

After Georgi’s seminal paper [1] unparticle effects have been 
explored in many areas spanning collider physics [2–8], muonic 

* Corresponding author at: Frankfurt Institute for Advandced Studies (FIAS), Ruth-
Moufang-Str. 1, 60438 Frankfurt am Main, Germany.

E-mail addresses: wondrak@fias.uni-frankfurt.de (M.F. Wondrak), 
nicolini@fias.uni-frankfurt.de (P. Nicolini), bleicher@fias.uni-frankfurt.de
(M. Bleicher).
http://dx.doi.org/10.1016/j.physletb.2016.06.013
0370-2693/© 2016 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
atoms [9], gauge and Higgs interactions [10,11], cosmology and as-
trophysics [12,13], AdS/CFT correspondence [14] as well as gravity 
short scale deviations [15,16] and black holes [17–21]. Unparti-
cles also play a crucial role in the fractal properties of a quantum 
spacetime. A new fractality indicator, called un-spectral dimension, 
has recently been proposed to address the case of a random-
walker problem in terms of an unparticle probe [22]. When the 
manifold topological dimension is 2, the un-spectral dimension 
turns out to be 2dU , i.e., it depends only on the scaling dimension 
dU . This fact explains the complete “fractalizazion” of the event 
horizon of un-gravity black holes [19,20], as well as of metal-
lic plates for the Casimir effect in the presence of an un-photon 
field [23]. Finally, unparticles have been proposed to explain some 
anomalies in currents flowing in super-conductors [24] and trans-
port phenomena in cuprates [25].

In this paper we want to address one of the basic parameters 
of unparticle physics, i.e., the value of �U , the typical energy scale 
of the theory. To achieve this goal, we consider the modifications 
of static potentials that emerge from virtual unparticle exchange. 
Specifically by considering the corrections to the Coulomb poten-
tial we calculate the deviations of the ground state energy of the 
hydrogen atom. We show that competitive bounds on �U can be 
derived by a comparison with experimental data.

The paper is organized as follows. After a short review of the 
basic formalism of unparticle physics (Section 2), we present the 
calculation of the energy shift by a perturbative solution of the 
Schrödinger equation in the presence of an unparticle modified 
electrostatic potential (Section 3). Finally, in Section 4 we draw our 
conclusions.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Electron–proton interaction due to a vector field Aμ and an unparticle scalar 
field φU .

2. Unparticle physics and static potentials

We recap the basic motivations of unparticle physics along the 
lines of Georgi [1]. We start by considering that at some very high 
energy scale, the Standard Model is accompanied by an additional 
sector of Banks–Zaks fields (BZ). The interaction between the two 
sectors takes place by exchange of mediating particles having a 
large mass scale MU . If our energy scale of interest falls below MU , 
we can apply effective field theory to integrate out the mediating 
field [26] and get the final interaction Lagrangian

1

Mk
U
OSM OBZ (1)

where OSM denotes a Standard Model field operator of scaling di-
mension dSM and OBZ is a Banks–Zaks field operator of scaling 
dimension dBZ . The factor M−k

U guarantees the dimensional con-
sistency of (1), being k = dSM + dBZ − D and D is the spacetime 
dimension.

If the energy is further decreased to �U < MU , the Banks–Zaks 
fields undergo a dimensional transmutation and exhibit a scale in-
variant behavior with a continuous mass distribution. For energies 
lower than �U , the BZ sector becomes unparticle operators OU . 
The matching conditions onto the Banks–Zaks operators are im-
posed at the energy scale �U and determine the structure of the 
coupling between the Standard Model and the unparticle fields 
based on (1):

CU �
dBZ−dU
U

Mk
U

OSM OU = λ

�
dSM+dU−D
U

OSM OU (2)

where dU is the scaling dimension of the unparticle operator OU , 
CU denotes a dimensionless constant and λ is a dimensionless 
coupling parameter defined by

λ = CU

(
�U
MU

)k

< 1 . (3)

The inequality holds if CU < 1 and dBZ > D − dSM. Any exper-
imental bound on the interaction allows for constraints on the 
unparticle parameter space, i.e., �U , λ and dU . The scale hierar-
chy is given by 1 TeV ≤ �U < MU ≤ MPl, where MPl is the Planck 
mass [21]. In the rest of the present paper we assume D = 4 as 
well as the customary interval 1 < dU < 2 (cf. [2]). The case dU = 1
does not give rise to fractalizazion or other continuous dimension 
effects of unparticle physics.

Unparticles have been largely employed in context of static po-
tential emerging from virtual particle exchange [11,15,16,20,27]. 
Such results are instrumental to the working hypothesis of the cur-
rent investigation. In view of the analysis of the hydrogen atom, 
we consider an additional contribution to the Coulomb potential 
for the presence of unparticle exchange in the interaction between 
electron and proton (cf. Fig. 1). In general, we assume electrons 
and protons to carry unparticle charges λe and λp, respectively, 
and a scalar unparticle field φU . At the same time, both particles 
also possess electric charges ±e allowing them to couple to the 
photon field Aμ . Both interactions are independent of each other 
since we assume the effective couplings between unparticle stuff 
Fig. 2. Interaction energy per unit unparticle charge with respect to the radial dis-
tance r in the case �U = 1 TeV. The unparticle scaling dimension dU is raised from 
dU = 1.0 to dU = 2.0 in steps of 0.2 corresponding to growing dash lengths.

and photons to be negligible. Therefore the interaction Lagrangian 
can be written as

Lint = Jμ Aμ + 1

(�U )dU−1
JUφU (4)

where Jμ = j(�x) δμ
0 and JU = jU (�x) and

j(�x) = −e δ(�x − �xe) + e δ(�x − �xp) (5)

jU (�x) = λe δ(�x − �xe) + λp δ(�x − �xp). (6)

Alternatively one can consider the interaction Lagrangian1 for a 
vector unparticle field (AU )μ and derive the static potential much 
in the same way as in the scalar case. The two results do not dif-
fer apart from a global sign (see e.g. [16]). We recall, however, 
that conformal invariance can be lost for vector fields if dU < 3, 
although pure scale invariance can be preserved. For scalar unpar-
ticles the issue does not arise [26].

The expression for the unparticle interaction energy VU be-
tween an electron and a proton in the static case reads [11,15,
16,20,27]

VU = −ξdU

(
λe λp

�
2dU−2
U r2dU−1

)
(7)

where the coefficient is ξdU ≡
√

π

(2π)2dU

�
(

dU − 1
2

)
�(dU )

and r ≡
|�xe − �xp| denotes the distance between the charges.

For the typical size of the hydrogen atom we can estimate the 
energy correction with the help of Fig. 2. For r = 0.05 nm the en-
ergy shift per unit unparticle charge varies between 3 ×102 eV and 
6 × 10−19 eV in the range 1 < dU < 2 with �U = 1 TeV.

3. Unparticle effects in the hydrogen atom

The hydrogen atom is a well investigated system. In the non-
relativistic limit we can apply the Schrödinger formalism to de-
scribe electron dynamics in a static Coulomb potential of the pro-
ton, by using the particle reduced mass μ. The energy spectrum in 
Gaussian/natural units (4πε0 = h̄ = c = 1) reads

ES
th, n = −μα2

2n2
(8)

1 The Lagrangian in such a case reads

Lint = Jμ Aμ + 1

(�U )dU−1
JμU (AU )μ

where JμU = jU (�x) δμ
0 .
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Table 1
Theoretical and experimental values of the hydrogen ground state energy.

Energy Description Value

ES
th Schrödinger, non-relativistic −13.598 287 eV

ES, rel
th Schrödinger, incl. fine-structure −13.598 468 eV

ED
th Dirac −13.598 468 eV

EQED
th currently best theoretical value [29] −13.598 434 49 (9) eV

3 288 086 857.127 6 (3 1) MHz · h

Eexp currently best experimental value [30] −13.598 434 48 (9) eV
3 288 086 856.8 (0.7) MHz · h
for all n ∈N. Here we used the fine-structure constant α ≡ e2. The 
biggest corrections to the Schrödinger description are of order α4

and arise from relativistic effects (i.e. kinetic, spin–orbit and Dar-
win terms) that can be included via fine-structure modifications of 
the Hamiltonian.

There exist higher order corrections as well. The proton pos-
sesses a finite size which affects the form of the Coulomb potential 
for distances shorter than its radius. Since the proton has a spin 
which interacts with both the electron angular motion and the 
electron spin, hyperfine corrections arise. Finally, one can include 
QED corrections such as the Lamb shift. In Table 1, the ground 
state energy in different descriptions is displayed. Note that the 
uncertainty of the two most accurate values arises from the uncer-
tainty in the Planck constant h = 4.135 667 662 (25) × 10−15 eVs
[28].

We start our analysis by considering the energy level shift due 
to unparticle effects within the non-relativistic description. The ra-
dial Schrödinger equation of the hydrogen atom in the presence of 
both electrostatic and unparticle potentials reads

H unl(r) = Enlm unl(r) (9)

with the Hamiltonian

H = − 1

2μ

d2

dr2
+ l (l + 1)

2μ r2
− e2

r
− ξdU

λe λp

�
2dU−2
U r2dU−1

(10)

where the complete wavefunction is given by

ψnlm(r, ϑ, ϕ) = unl(r)

r
Ylm(ϑ, ϕ). (11)

The above equation is a second order, linear, ordinary differential 
equation with non-polynomial coefficients. To our best knowledge 
no exact solution is available in the literature but one can still 
rely on perturbation theory. This is justified since �U > 1 TeV by 
hypothesis, i.e., unparticle physics can lead only to subleading cor-
rections to the Standard Model. As a result the energy shift of the 
ground state at the first order in perturbation theory reads

�
(1)
100 =

〈
100(0)

∣∣∣ − ξdU
λe λp

�
2dU−2
U r2dU−1

∣∣∣ 100(0)
〉

= −4 ξdU
λe λp

�
2dU−2
U a3

∞∫
0

dr r−2dU+3 e
−2r

a

= − 1

(2π)2dU−2

(dU − 1)
(

3
2 − dU

)
sin(2πdU ) (�(dU ))2

× λe λp

�
2dU−2
U a2dU−1

, (12)

where we used ψ
(0)
100 = 2√

4πa3
e− r

a with a ≡ 1/(αμ) 	 5.29 ×
10−11 m.
For 1 < dU < 2, the sign of �(1)
100 is determined by the product 

of λe and λp. This means that like unparticle charges lead to a 
shift to lower energies while unlike charges cause a shift to higher 
energies.

The theoretical energy value Eth can be divided up into the 
Schrödinger contribution ES

th and higher order terms EHO
th . The 

same applies to the unparticle-modified quantities. As a result we 
can approximate the energy shift as∣∣Eth,U − Eth

∣∣ =
∣∣∣(ES

th,U + EHO
th,U

)
−

(
ES

th + EHO
th

)∣∣∣
	

∣∣∣ES
th,U − ES

th

∣∣∣ . (13)

Here EHO
th,U stands for all the higher order contributions in the 

presence of unparticles, contributions we deliberately neglected in 
our first order description. This assumption introduces a theoreti-

cal error δEth ∼
∣∣∣EHO

th,U − EHO
th

∣∣∣. Thus the bound on the energy shift 
can be written as∣∣∣ES

th,U − ES
th

∣∣∣ =
∣∣∣�(1)

100

∣∣∣ < δEth + δEexp , (14)

where δEexp is the experimental error. From Table 1, one can see 
that the Schrödinger description differs from the QED result by 
about 1.5 × 10−4 eV. The theoretical relative error can be esti-
mated to be δEth/ 

∣∣ES
th

∣∣ 	 1.1 × 10−5. It dominates over the ex-
perimental relative error that is of the order of 2.2 × 10−10 [30]. 
Accordingly we define δmax ≡ (δEth + δEexp)/ 

∣∣ES
th

∣∣ 	 1.1 × 10−5 to 
get

∣∣∣∣∣�
(1)
100

ES
th

∣∣∣∣∣ = 2α2dU−3 μ2dU−2

(2π)2dU−2

(dU − 1)
(

3
2 − dU

)
sin(2πdU ) (�(dU ))2

∣∣λe λp
∣∣

�
2dU−2
U

< δmax . (15)

From (15) we obtain

�U ≥ αμ

2π

⎛
⎝ 2

α

(dU − 1)
(

3
2 − dU

)
sin(2πdU )(�(dU ))2

∣∣λe λp
∣∣

δmax

⎞
⎠

1
2dU−2

. (16)

In Fig. 3 the lower bounds for �U are illustrated for differ-
ent values of the unparticle charge λ, where we assumed |λe| =
|λp| ≡ λ. The area above each curve is the allowed parameter 
space for the chosen value of λ. If the parameter λ is larger than 
a threshold value, λ > λth ≡ √

2πα δmax 	 7.1 × 10−4, the lower 
bound on �U is diverging for dU → 1 and exceeds 1 TeV in some 
parameter region. Here λth is obtained by requiring that the base 
of the exponentiation in (16) equals 1. The limit �U → ∞ corre-
sponds to vanishing unparticle effects since the unparticle sector in 
the Lagrangian (4) disappears yielding the standard electrodynam-
ics limit Lint → Jμ Aμ . This explains the divergent lower bound on 
�U expected also in other experiments such as the electron g − 2
anomaly [8] or the Casimir effect [23]. In contrast, for λ ≤ λth, the 
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Fig. 3. Lower bounds for the energy scale �U with respect to the unparticle scaling 
dimension dU . The unparticle charge λ ≡ |λe| = |λp| increases exponentially from 
λ = 1.0 × 10−6 to λ = 1.0 × 10−1 with decreasing dash lengths. The additional up-
permost curve belongs to λ = 9.0 × 10−1.

scale �U is weakly constrained in the limit dU → 1. This means 
that the unparticle contribution lies within δmax irrespectively of 
the value of �U .

4. Discussion and conclusions

In the current work, we have derived the corrections to the 
hydrogen atom ground state energy due to the presence of an un-
particle modified static potential. We obtained this result within a 
perturbative analysis of the non-relativistic theory of the hydrogen 
atom. Our result lets obtain compelling limits on the unparticle 
scale �U . For dU � 1.3, bounds on �U exceed 1 TeV. Contrary to 
other proposed investigations (e.g. Newton’s law correction [15], 
proton–proton collisions at the LHC [5,6]), the presented analysis 
can capture the key feature of unparticle physics, i.e., the depen-
dence on the continuous scaling dimension dU .

The presented results are filling a gap in the literature and are 
opening the route for further investigations. For instance one may 
be interested to find an exact solution of the Schrödinger equa-
tion (9) emerging from the inclusion of unparticle static potentials. 
Higher order corrections to the non-relativistic description can also 
be included in the analysis in order to approach the bounds cur-
rently offered by g − 2 analyses [8].

From the current non-relativistic analysis one can draw an im-
portant conclusion: Unparticle effects might be tested in atomic 
physics experiments.
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