3,609 research outputs found

    Application of the penalty coupling method for the analysis of blood vessels

    Get PDF
    Due to the significant health and economic impact of blood vessel diseases on modern society, its analysis is becoming of increasing importance for the medical sciences. The complexity of the vascular system, its dynamics and material characteristics all make it an ideal candidate for analysis through fluid structure interaction (FSI) simulations. FSI is a relatively new approach in numerical analysis and enables the multi-physical analysis of problems, yielding a higher accuracy of results than could be possible when using a single physics code to analyse the same category of problems. This paper introduces the concepts behind the Arbitrary Lagrangian Eulerian (ALE) formulation using the penalty coupling method. It moves on to present a validation case and compares it to available simulation results from the literature using a different FSI method. Results were found to correspond well to the comparison case as well as basic theory

    Summary of the Very Large Hadron Collider Physics and Detector Workshop

    Get PDF
    One of the options for an accelerator beyond the LHC is a hadron collider with higher energy. Work is going on to explore accelerator technologies that would make such a machine feasible. This workshop concentrated on the physics and detector issues associated with a hadron collider with an energy in the center of mass of the order of 100 to 200 TeV

    Quasi-Monte Carlo for Highly Structured Generalised Response Models

    Get PDF
    Highly structured generalised response models, such as generalised linear mixed models and generalised linear models for time series regression, have become an indispensable vehicle for data analysis and inference in many areas of application. However, their use in practice is hindered by high-dimensional intractable integrals. Quasi-Monte Carlo (QMC) is a dynamic research area in the general problem of high-dimensional numerical integration, although its potential for statistical applications is yet to be fully explored. We survey recent research in QMC, particularly lattice rules, and report on its application to highly structured generalised response models. New challenges for QMC are identified and new methodologies are developed. QMC methods are seen to provide significant improvements compared with ordinary Monte Carlo methods

    Single Top Quark Production as a Probe for Anomalous Moments at Hadron Colliders

    Get PDF
    Single production of top quarks at hadron colliders via gWgW fusion is examined as a probe of possible anomalous chromomagnetic and/or chromoelectric moment type couplings between the top and gluons. We find that this channel is far less sensitive to the existence of anomalous couplings of this kind than is the usual production of top pairs by gggg or qqˉq\bar q fusion. This result is found to hold at both the Tevatron as well as the LHC although somewhat greater sensitivity for anomalous couplings in this channel is found at the higher energy machine.Comment: New discussion and 10 new figures added. uuencoded postscript fil

    Wound-healing capabilities of whale sharks (Rhincodon typus) and implications for conservation management

    Get PDF
    Wound healing is important for marine taxa such as elasmobranchs, which can incur a range of natural and anthropogenic wounds throughout their life history. There is evidence that this group shows a high capacity for external wound healing. However, anthropogenic wounds may become more frequent due to increasing commercial and recreational marine activities. Whale sharks are particularly at risk of attaining injuries given their use of surface waters and wildlife tourism interest.There is limited understanding as to how whale sharks recover from injuries, and often insights are confined to singular opportunistic observations. The present study makes use of a unique and valuable photographic data source from two whale shark aggregation sites in the Indian Ocean. Successional injury-healing progression cases were reviewed to investigate the characteristics of injuries and quantify a coarse healing timeframe. Wounds were measured over time using an image standardization method. This work shows that by Day 25 major injury surface area decreased by an average of 56% and the most rapid healing case showed a surface area reduction of 50% in 4 days. All wounds reached a point of 90% surface area closure by Day 35. There were differences in healing rate based on wound type, with lacerations and abrasions taking 50 and 22 days to reach 90% healing, respectively. This study provides baseline information for wound healing in whale sharks and the methods proposed could act as a foundation for future research. Use of a detailed classification system, as presented here, may also assist in ocean scale injury comparisons between research groups and aid reliable descriptive data. Such findings can contribute to discussions regarding appropriate management in aggregation areas with an aim to reduce the likelihood of injuries, such as those resulting from vessel collisions, in these regions or during movements between coastal waters

    Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark

    Get PDF
    Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks’ horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial “cryptic” lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic

    Physics Beyond the Standard Model

    Full text link
    I briefly summarize the prospects for extending our understanding of physics beyond the standard model within the next five years.Comment: 9 pages, 2 figures, LaTeX. Presented at the 1999 UK Phenomenology Workshop, Durham, September 1999. To be published in Journal of Physics

    Optimal use of Information for Measuring MtM_t in Lepton+jets ttˉt\bar{t} Events

    Full text link
    We present a novel approach that is being developed at DZero for extracting information from data through a direct comparison of all measured variables in an event with a matrix element that describes the entire production process. The method is exemplified in the extraction of the mass of the top quark in top-antitop events in the lepton+jets final state. Monte Carlo studies suggest that an improvement of about a factor of two in statistical uncertainty on the mass of the top quark can be achieved relative to previously published work for the same channel. Preliminary results from the re-analysis provide a reduction in the statistical uncertainty of almost a factor of 1.6, corresponding to an effective factor of 2.4 increase in the size of the data sample.Comment: presented at HCP200

    Weakly-Coupled Higgs Bosons and Precision Electroweak Physics

    Get PDF
    We examine the prospects for discovering and elucidating the weakly-coupled Higgs sector at future collider experiments. The Higgs search consists of three phases: (i) discovery of a Higgs candidate, (ii) verification of the Higgs interpretation of the signal, and (iii) precision measurements of Higgs sector properties. The discovery of one Higgs boson with Standard Model properties is not sufficient to expose the underlying structure of the electroweak symmetry breaking dynamics. It is critical to search for evidence for a non-minimal Higgs sector and/or new physics associated with electroweak symmetry breaking dynamics. An improvement in precision electroweak data at future colliders can play a useful role in confirming the theoretical interpretation of the Higgs search results
    • 

    corecore